
834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Synthesis of Software Programs for
Embedded Control Applications

Felice Balarin,Member, IEEE, Massimiliano Chiodo,Member, IEEE, Paolo Giusto, Harry Hsieh,Student Member, IEEE,
Attila Jurecska, Luciano Lavagno,Member, IEEE, Alberto Sangiovanni-Vincentelli,Fellow, IEEE,

Ellen M. Sentovich, and Kei Suzuki

Abstract— Software components for embedded reactive
real-time applications must satisfy tight code size and run-
time constraints. Cooperating finite state machines provide
a convenient intermediate format for embedded system
co-synthesis, between high-level specification languages and
software or hardware implementations. We propose a software
generation methodology that takes advantage of a restricted
class of specifications and allows for tight control over
the implementation cost. The methodology exploits several
techniques from the domain of Boolean function optimization.
We also describe how the simplified control/data-flow graph
used as an intermediate representation can be used to accurately
estimate the size and timing cost of the final executable code.

Index Terms—Boolean functions, estimation, finite state ma-
chines, high-level synthesis, optimizing compilers, real-time sys-
tems scheduling, software performance.

I. INTRODUCTION

A. The Context: Embedded Systems

Embedded systemsare electronic components of a physical
system such as a vehicle, a chemical plant, a nuclear plant, or
a communications system, that typically:

• monitor variables of the physical system such as temper-
ature, pressure, traffic, chemical composition;

• process this information making use of one or more
mathematical models of the physical system;

• output signals that influence the behavior of the physical
system to control its function and optimize its perfor-
mance.

Embedded systems cover a broad range of applications,
from microwave ovens and watches to telecommunication

Manuscript received April 7, 1998; revised October 21, 1998. The work
of H. Hsieh was supported by Semiconductor Research Corporation (SRC)
under Contract DC-324. This paper was recommended by Associate Editor
R. Camposano.

F. Balarin is with Cadence Berkeley Laboratories, Berkeley, CA 94707
USA (e-mail: felice@cadence.com)

M. Chiodo and P. Giusto are with Cadence Design Systems, Inc., San Jose,
CA 95134 USA.

H. Hsieh and A. Sangiovanni-Vincentelli are with the University of Cali-
fornia at Berkeley, Berkeley, CA 94707 USA.

A. Jurecska is with Synopsys, Beaverton, OR 97006 USA.
L. Lavagno is with Politecnico Di Torino, Torino 10129, Italy.
E. Sentovich is with Cadence Berkeley Laboratories, Berkeley, CA 94707

USA.
K. Suzuki is with Central Research Laboratory, Hitachi Ltd., Kokubunji,

185 Tokyo, Japan.
Publisher Item Identifier S 0278-0070(99)03962-7.

network management and control functions. These embedded
systems are integrated onto the physical system itself and
hidden from the user. The implementation of such systems
can vary from a full hardware configuration, where all the
tasks to be performed by the embedded system are translated
into a suitable set of customized integrated circuits, to a full
software implementation, where all the tasks are implemented
as software routines run on a standard component, such
as a microprocessor or a digital signal processor (DSP).
While in the past hardware configurations dominated the field,
today most of the applications are implemented in a mixed
configuration, where software has the lion’s share. This shift
has been basically due to the flexibility offered by software
implementations and to the increasing importance of time-to-
market considerations in engineering design.

B. The Problem: Software Synthesis

The bottleneck for the implementation of embedded systems
has long been considered the development of software, its
debugging, and its integration with the hardware components.
Recently, it has been pointed out that the capability of ana-
lyzing a system before a particular technology is chosen as
a target implementation is of paramount importance to have
“right-for-the-first-time” designs.

This scenario fueled the quest for a design methodology
that favors system-level descriptions of functionality and con-
straints, technology-independent verification, and automati-
coptimized mapping from the system-level descriptions and
constraints to software and hardware implementations. While
hardware synthesis has been the object of considerable atten-
tion over the recent past, much less attention has been devoted
to the process of software synthesis.

We informally distinguish betweensoftware synthesisand
software compilation, according to the type of input specifi-
cation. The term software compilation is generally associated
with an input specification using C- or Pascal-like imperative,
generally nonconcurrent, languages. These languages have
a syntax and semantics that is very close to that of the
implementation (assembly or executable code). In some sense,
they already describe, at a fairly detailed level, the desired
implementationof the software. We will use the term software
synthesis to denote an optimized translation process from a
high-level specification that describes thefunction that must
be performed, rather than the way in which it must be
implemented. Software synthesis can be, for example, the

0278–0070/99$10.00 1999 IEEE

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 835

C or assembly code generation capabilities of DSP graphi-
cal programming environments, such as Ptolemy ([11]), of
graphical finite state machine (FSM) design environments,
such as StateCharts ([20]), or of synchronous programming
environments such as Esterel, Lustre, and Signal ([19]).

This notion of software synthesis received much attention
in the early 1970’s but results were mainly theoretical with
little practical impact on software design practices. The lack
of results of practical importance was mainly caused by
the very wide range of possible applications that required
heterogeneous models of computation and constructs, such
as pointers, memory allocation, and recursion, that were too
difficult to manipulate efficiently in an automatic fashion.

C. Compiler Technology

On the other hand, compiling a high-level language into
machine instructions has been the enabling technology for
the extended use of computers for all kinds of applications.
The progress of compiler technology has been exciting over
the past 20 years. Compilers translate high-level constructs
into an optimized set of machine instructions. This translation
occurs in two basic steps: mapping from high-level constructs
into intermediate code that is often processor independent, and
mapping of the intermediate code into the actual “architecture”
(instruction set and registers) of the processor to be used.
The first step is optimized by applying a set of semilo-
cal transformations to yield an intermediate representation
that can be directly translated to more compact and faster
code. The following steps deal with the architecture-specific
transformations that include register allocation and instruction
selection.

The use of semilocal, peep-hole optimization is justified on
the one hand by the need for compiling code in reasonable
time, on the other by the great variety of constructs to deal
with. After all, it is often reported that the bottleneck in
software debugging is compilation time.

D. Software versus Hardware Compilation

The analogy between hardware and software compilation
has been known and exploited for a long time [16]. Hard-
ware compilation (or high-level synthesis) [7], [27] involves
functional and register allocation and scheduling, followed by
component synthesis and optimization. Software compilation
[1] traditionally involves register allocation and instruction
selection, followed by local optimizations.

Exploiting the link between these two continues to be
a fruitful avenue for research: technologies for each are
continually advancing, and the two domains have traditionally
had significant differences that have prevented the application
of some techniques in each domain to the other. In particular,
optimization has typically been more aggressive in hardware
synthesis, while for software long compilation times have
prevented global techniques from being employed.

In our context, hardware and software in a single system
are synthesized together. This implies that the software part
is derived from the same starting point as the hardware and,
thus, is “hardware-like” and contains a small set of simple

constructs. For example, features like recursion, pointers and
loop bounds that can be determined only at run-time, are not
used, because they are hard (and in general even impossible)
to implement in hardware. This software lends itself well to
aggressive, global optimizations as are traditionally applied to
hardware. As mentioned previously, we refer to this creation
and optimization of restricted software as “software synthesis”
rather than “software compilation.” We apply optimization
techniques derived from the hardware optimization area to
optimization of embedded software.

E. Restricted Application Domains

When we deal with specialized applications, such as DSP,
the range of different constructs to consider is much more
restricted than in general computing. Hence, more aggressive
optimization is possible, and has indeed been attempted,
yielding interesting results [26].

Most of the embedded systems applications do not require a
wide variety of coding constructs. We strongly believe that in
this class of systems, automatic optimization and verification
can be pushed to a level that is unprecedented in “standard”
compiler and operating system technology.

F. Our Environment and Requirements

To really decrease development time for embedded sys-
tems, we have to select a high-level representation that is
implementation independent and easy to use for a system
designer, and then select a set of mathematically well-defined
operations to translate and optimize this representation. Among
all embedded systems applications, we chose to focus on
control-dominatedembedded systems, characterized by the
importance given to the decision process that leads from a
set of input events to a set of output events (reaction). The
high-level representation of choice is an interconnection or
network of communicating processes withFSM semantics.
Today, FSM’s are commonly used in embedded system de-
sign tools both explicitly (specified in graphical or textual
form [20], [32]) and as an intermediate format ([8], [19],
[35]).

G. TheFSM Model: CFSM’s

The use ofFSM’s for embedded control specification offers
several advantages over apparently more powerful formalisms
(such as unrestricted programming languages). First of all,
they are easily understood and widely used even as informal
specifications. Second, there are abundant theoretical and
practical results concerning their manipulation (minimization,
encoding, formal verification of properties, etc.).

Unfortunately “pure”FSM’s do not provide a very con-
venient representation for systems that perform even a small
amount of computation. It is then customary to extend them
with the capability to perform assignments of expressions
to variables, and to use relational operators to determine
transition conditions. This mechanism increases the expressive
power at the expense of the synthesis and verification capa-
bilities (e.g., there is no longer a “canonical” form for such
extendedFSM’s, verification becomes much more difficult,

836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

etc.). In our design methodology and tools, we have se-
lected an extended FSM model calledcodesign FSM(CFSM),
defined in [12] and [13]. This representation extends classical
FSM’s with arithmetic and relational operators, and assumes
that CFSM’s interact via an asynchronous communication
mechanism that allows great flexibility and expressive power.
Even though throughout this paper we refer toCFSM’s
as representation, our results on software generation can be
applied to any extended FSM-based specification, like those
mentioned above.

H. Our Approach to Software Synthesis

The purpose of this paper is to describe algorithms for
a software synthesis system generating C code fromFSM
specifications. This system includes optimization techniques
that are either impossible or simply too expensive in the
general compiler domain ([1]), but are very effective in
our restricted domain. Moreover, unlike classical compilation
algorithms, our software synthesis technique starts from a
description of thefunction to be computed, rather than from
an operational implementation of it. This allows the use of
powerful optimization algorithms based on Boolean function
manipulation methods. We tightly couple the optimization
process with a fast and accurate timing and code-size esti-
mation procedure to take into account constraints at a much
finer granularity than is possible with a truly general-purpose
compiler. We do not claim to have invented a new general
purpose compiler, because the domain of applications is much
more restricted.

Throughout this paper we make the following main assump-
tions.

1) The specification is given as a network ofCFSM’s.
Note that even though such a specification is not biased
toward any particular implementation, it does impose
a network structure which we preserve during synthe-
sis. This means that eachCFSM is a synchronous,
statically scheduled entity, while the network is asyn-
chronous, concurrent, and dynamically scheduled. The
granularity level is defineda priori by the designer,
and the ordering of emission of output events is de-
cided statically by our synthesis algorithm, with the
objective of minimizing code size as discussed in Sec-
tion III-B. A more global approach, in which the syn-
chronous/asynchronous boundary can be chosen as part
of the synthesis process, with the objective of simultane-
ously optimizing code size and execution time is left to
future research. Note that a growth of the synchronous
islands (CFSM’s) typically induces:

• an increase in code size, due to the more complex
transition function that must be computed;

• a reduction in execution time (if synthesis is per-
formed using the techniques described in Section
III-B, where the execution time of the control portion
of the code depends almost entirely on the number
of inputs and outputs of eachCFSM), due to:

—the reduction of communication and scheduling
overhead;

—(possibly) the increased utilization of processor
resources, due to exposing larger statically sched-
uled units to the underlying C compiler.

2) A real-time operating system (RTOS) is used to activate
appropriately the tasks implementing theCFSM’s. Our
synthesis procedure, in addition, provides execution time
estimates that can be used either by a user or by an
automatic RTOS generator to devise a scheduling policy
that is guaranteed to meet the timing constraints.

3) An existing general-purpose C compiler is used to
transform the C code that we produce into machine
code. This allows us to concentrate on domain-specific
transformations, while leaving general ones such as reg-
ister allocation and instruction selection to the general-
purpose C compiler. Note that the C code that we
produce is so simple and low-level that we can keep
a very tight control over the resulting machine code,
and the compiler cannot “undo” our optimizations.

We use a control/data-flow diagram (called ans-graph, for
software graph) as an intermediate data structure. The s-graph
is simpler than general control/data-flow diagrams, because
it needs only to represent a single function from a discrete
domain (the set of input events and values) to a discrete
domain (the set of output events and values). As such, it
requires only conditional branch and assignment as primitives
(augmented with arithmetic and relational expressions without
side effects). The s-graph has a direct representation in C
and can be translated with equal ease into object code by
any available compiler. In this way, we can obtain good cost
and performance estimates at any intermediate stage of the
optimization process, without the need to compile the code
and analyze the results.

Our software synthesis procedure is composed of the fol-
lowing main steps:

1) optimized translation of the transition function of a given
CFSM into an s-graph;

2) s-graph optimization and code-size estimation;
3) translation of the s-graph into a target language;
4) scheduling of theCFSM’s and generation of the RTOS;
5) compilation into machine code to be run on the target

processor.

Step 1 consists of building an optimized binary decision dia-
gram (BDD, [10]) for the transition function as an intermediate
representation, to generate an initial s-graph corresponding to
code that executesvery fast, potentially at the expense of code
size. It is based on a new result, described in this paper, that
states the equivalence between:

• a multioutput multivalued function ;
• an s-graph computing, that is directly obtained from a

BDD representing .

Step 2 is similar to standard software optimization tech-
niques based on control/data-flow diagrams (Section II con-
tains a discussion of its relation to previous work). Thus far, we
have generated C code in Step 3, though any target language
is possible. Step 4 uses the software performance estimation
package and classical real-time scheduling algorithms [24],
[18] to schedule theCFSM’s while meeting the given timing

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 837

constraints. The compilation in Step 5 is done using existing
C compilers for the target embedded processors.

The paper is organized as follows. Section II contains
background information and a summary of theCFSM network
model. Section III contains the s-graph structure definition, its
synthesis and optimization fromCFSM’s, C code generation,
and software cost and performance estimation based on s-
graphs. Section IV describes the functionality of the automat-
ically generated RTOS. Section V shows some experimental
results demonstrating the effectiveness of the approach.

II. PRELIMINARIES

A. Previous Work

1) Software Synthesis:Previous approaches to automated
software synthesis for reactive real-time systems have started
either from synchronous programming languages (e.g., Esterel,
[8]), or from other high-level languages ([14] and [17]).

In the first case, the main problem is the identification
of a single FSM equivalent to the Esterel specification, and
its efficient implementation as a software program. Previous
versions of the Esterel compiler (v3) produced a singleFSM,
which resulted in a veryfast implementation (as all the
internal communication between modules disappears when the
single FSM is produced), at the expense of code size. The
versions from v4 on ([34]; see also [9]) maintain a multi-
FSM representation, while ensuring that the global behavior is
equivalent to that of a single FSM.1 Thus, the composition
is never computed explicitly. This results in a code size
that is usually linear in the size of the specification (in the
worst case, it is proportional to the square of the size of the
specification). The translation is done via the intermediate form
of Boolean circuits, enabling logic optimization techniques
to be used to reduce the final code size. However, these
optimization techniques are applied to an abstract represen-
tation of the final code, and no low-level or target-specific
optimizations are available. Furthermore, the optimization is
applied globally to the entire system, with no opportunity
for optimizing on a module-by-module basis. Our approach,
on the other hand, allows a finer tradeoff between size and
speed:

• the designer can choose the granularity of the generated
CFSM’s, even if they are produced from an Esterel
specification ([36]);

• the designer can manipulate theCFSM hierarchy during
synthesis;

• the optimizations are done at a level closer to the final
C-code implementation;

• optimizations include both Boolean-circuit based algo-
rithms and decision-tree based algorithms; thus far the
decision-tree based algorithms have been more successful
in producing compact code.

In the second case, the main emphasis is on thescheduling
of operations derived from a concurrent high-level specifica-
tion (e.g., hardware-C, [21]). The problem is that of choosing
an order for potentially concurrent operations that satisfies

1See [7] for more on composition and causality.

the given timing constraints. In our case, we decompose the
problem of satisfying timing constraints into two (possibly
iterated) steps:

a) software generation for eachCFSM;
b) scheduling ofCFSM transitions to satisfy timing con-

straints.

Thus, we can take advantage of the large body of research
about scheduling for real-time systems (e.g., [24]) for the
second step. On the other hand, some of the fine-grained
scheduling algorithms described in [17] and [14], for exam-
ple, can also be used to perform a preliminary optimization
before our synthesis algorithm. This would allow an easier
satisfaction of “short term” timing constraints (e.g., those
dictated by a specific interface protocol implemented directly
in software) which may be more difficult to satisfy with
classical scheduling techniques (designed for “long term”
response and input rate constraints).

2) Hardware High-Level Synthesis:Hardware high-level
synthesis can roughly be divided into two stages:behavioral
and register-transfer level(RTL). The input to the behavioral
synthesis is a sequential specification, where timing of actions
is not fixed. Its output is a collection of registers and a cycle-
by-cycle specification of how the registers change. This is
then the input to RTL synthesis, which mostly deals with the
combinational specification of register transfers, and builds an
optimized circuit for it.

Similarly to classical compilers, behavioral synthesis usually
operates on a description that is structurally very similar to
the original specification (e.g., CFG graph). However, the
combinationalspecification at its output no longer bears this
resemblance, but it is rather in a form that facilitates powerful
combinational logic optimizations (e.g., sum-of-products or
BDD’s [7]). In our approach (enabled by domain restric-
tions), we transform the originalsequentialspecification into
such a form. This enables us to extend combinational logic
optimization techniques (BDD’s, to be more precise) to the
optimization of sequential programs. In general, these opti-
mizations are more powerful than local transformations used
by compilers and behavioral synthesis systems.

Perhaps not surprisingly, the relative value of optimization
techniques changes in the software area. For example, while
BDD’s are used extensively in combinational logic synthesis
to represent and manipulate Boolean functions (e.g., [7],
[25], and [31]), it is generally accepted that they are not
a very good structure for circuit implementation (except for
low-power [22]). In contrast, we will show thatBDD-like
structures are very efficient (though quite unreadable) program
implementations.

The approach of [7] usedBDD’s to represent control
functions in a high-level synthesis system. In their work, the
application is purely to hardware; the authors did not make
special considerations for software such as optimization based
on estimations of timing of instruction execution. They derive
the control functions and build theBDD for them on-the-
fly. Several ordering methods are used, but they are all static
heuristics for obtaining a good initialBDD. BDD optimization
based on reordering is not applied. Furthermore, that work

838 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

does not exploit interleaving of input and output variables (or
at least, does not mention this).

3) Hardware Simulation:Surprisingly enough, the closest
relatives of our software synthesis techniques come from
the area of cycle-based hardware simulation. Both [28] and
[3] are aimed at solving a problem that is quite similar
to ours: efficiently computing on a sequential machine the
transition function of anFSM. Both approaches rely on a BDD
representation of the transition function, and exploit the fact
that, given an input and present state assignment, there exists
a uniqueBDD path that can be used to compute the value of
the next state and output functions. This means that a single-
threaded sequential execution of thisBDD can be efficiently
implemented on a standard workstation.

Even though the basic problems are related, there are a
number of differences.

1) Their starting point is a large synchronous circuit repre-
sented at the gate level, hence, their main problem is to
efficiently represent theFSM without a blow-up of the
BDD sizes (mostly due to data computations represented
in FSM form).
Our starting point is an explicit representation of an
ExtendedFSM, in which data computation are repre-
sented using explicit arithmetic operators. Hence, we
do not suffer from blow-up problems due to the data
part. The BDD’s representing the control part suffer
from exponential growth less often, and the designer
can control this phenomenon directly, by changing the
CFSM granularity.

2) Their target is execution on high-end workstations.
Hence, they can afford to use very large BDD’s, and
even to use multivalued variables to represent sets of
binary variables, thus, causing large lookup tables to be
generated. Their main problem is cache and translation
lookaside buffer thrashing due to the huge size of the
generated tables. They also use a simple and fast table
lookup algorithm to implement theBDD’s using the
data section of the object code.
Our target is execution on often very small embedded
controllers, in which memory is a very expensive
and scarce resource. Hence, we implement theBDD’s
directly in executable code, i.e., in thetext section of
the object code. In this way, we can use the efficient
encoding of theBDD branching structure provided by
the instruction set encoding of the target processor (often
using fewer bits of address for near jumps).

For this reason, our techniques and results are quite different
from those of [28] and [3].

B. Binary Decision Diagrams

The BDD is a key data structure as an intermediate repre-
sentation for our software optimization techniques. Abinary-
decision diagram(BDD [2], [10]) is an efficient representation
for storing and manipulating Boolean functions. ABDD is
a directed acyclic graph with a root node for each output
function and leaf nodes representing the value of each out-
put function for each input minterm. Each nonleaf node is

associated with an input variable, and each of the two out-
edges of the node is associated with the value of the variable
(zero or one) along that branch. The representation is made
compact (reduced) by sharing common functional subgraphs.
Given a function and anorderingof the input variables, the
reduced-orderedBDD (simply calledBDD in the following)
is a canonical form for .

While the size of theBDD may be exponential in the
number of inputs for any ordering, in many practical cases
a good ordering can be found that produces aBDD of
manageable size. Functional operations on theBDD take
at most space and time (is the number of nodes
in the BDD); equivalence checking between twoBDD’s
requires only a graph isomorphism check. The canonicity
property of BDD’s, efficient BDD package implementation,
and recent improvements in variable ordering strategies have
made BDD-based algorithms efficient and effective for a
variety of problems involving Boolean function manipulation.

C. Characteristic Functions

Multioutput functions (or, equivalently, sets of functions
defined on the same domain) can be represented by their
characteristic functions. A single-output binary-valued func-
tion , where
and , represents the multioutput multivalued
function if . The
same notation can also be used to describe arelation , as

.
The function resulting when some argumentof a function
is replaced by a constant is called a restriction (or

cofactor) and is denoted . The projection of a function
onto a space orthogonal to (or smoothingof by , or

existential quantification of in) is denoted . That is,
if , then .

The support of an output variable of a multioutput
function is the set of inputs upon which essentially depends.
More precisely, an input variable belongs to the support of

if .

D. Network of Codesign FSM’s

Our model of a control-dominated reactive system (orig-
inally proposed in [12] and [13]) is globally asynchronous
locally synchronous (GALS)networkof CFSM’s communi-
cating viaevents. The interested reader is referred to [5] for
a more complete description of theCFSM model and of the
implementation choices that we have made.

An input or output CFSM event occurs at some point
in time and may carry a value which is represented by a
discrete-valued variable (cfr. the notion ofsignal in Esterel).
An example of a valued event is a temperature sample,
or a key hit on a keyboard; an example of a value-less
(also called “pure”) event is an excessive pressure alarm,
or a reset button. EachCFSM receives atomically (locally
synchronous), or detects, a snapshot of its input events, and
performs its calculations independently and asynchronously
of other CFSM’s (globally asynchronous). As a result of
the computation, it may sometimes later change state and/or

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 839

emit output events. Each event, with or without a value, is
associated with a Boolean flag, indicating thepresenceof the
event, which is true in the time interval between its emission
and its detection. The value of an event is updated by the
emitter:

• ideally, at the same time the presence flag is set;
• in practice, especially in a software implementation,

“some small amount of time before” the presence flag
is set2;

Each input event may be detected at most once at any time
after its emission: once detected, it is no longer present at the
input of theCFSM. A CFSM’s reaction to an event occurrence
is defined by thetransition function of the CFSM. The
transition function synchronously maps the set of input events
and values onto the set of output events and values, possibly
based on its internal state: .
A CFSM begins its reaction (computation of the transition
function) to an input event after asensing delay (sd)that
is greater than or equal to zero. It completes its reaction by
emitting some events after areaction delay (rd)that is strictly
greater than zero.

The model of communication is, in general,asynchronous:
the emission of events by theCFSM’s in the network may
happen at any time and independently. Because of the asyn-
chrony, there is no guarantee that aCFSM will detect an event
before it is emitted again. Hence, it is possible that an event
and its value are overwritten and lost. This is equivalent to the
assumption that there is a buffer of length one between each
CFSM and for each event.

Synchrony and Asynchrony:In our framework, theCFSM
model is used throughout the design process and, in particular,
as a mechanism to capture the design intent. We strongly
believe that at the highest levels of abstraction, restrictive
hypotheses have to be carefully evaluated to make sure that
designs of practical relevance can be appropriately modeled.
For this reason, we have chosen the communication mech-
anism to be asynchronous since this model does not overly
restrict the implementation domain to be considered.

We also believe that the restriction imposed by synchronous
languages such as Esterel, although very convenient from
the analysis point of view, is too strong at the highest
level of abstraction. Thesynchronous hypothesisassumes
that the reaction to external stimuli of the network of
concurrent processes occurs inzero time, i.e., all internal
communication can be abstracted away. As a result, it is
theoretically possible to extract a single, albeit possibly very
large,FSM equivalent to the network of concurrent processes.
This implies that formal verification and other analysis
techniques based on standardFSM’s are possible. On the
other hand, this also may imply a costly final implementation
(where one must ensure that the synchrony hypothesis is
indeed valid, that is, that the system reacts much faster
than its environment) and a small solution space (where
one must force the validity of the hypothesis). In particular,

2This choice was made in order to allow an efficient implementation in
software, without the need to disable interrupts for long periods of time to
implement emission atomicity.

the synchronous hypothesis implies that the behavior of a
correct implementation of a synchronous program must be
analogous to that of acombinational circuit (except for
waiting statements, which are equivalent to registers). As such,
a correct heterogeneous implementation (mixed hardware
and software) requires the solution of a very complex run-
time scheduling problem, equivalent basically to hardware
simulation.

Our asynchronous communication model is inherently non-
deterministic. This feature certainly makes the design and veri-
fication process more complex, becauseall possible resolutions
need to be considered. On the other hand, nondeterminism
enables us to easily model the unpredictability of the reaction
delay of aCFSM both at the specification level, where we
need to represent different implementation styles that imply
quite different reaction delays, and at the implementation level,
where delays may still remain intrinsically unpredictable.
Specifically, a software implementation has a delay that may
be much larger than a hardware one. Moreover, if soft-
ware is based on a RTOS supporting preemption, it has
reaction delays that depend on the context and as such, in
our opinion, cannot be represented accurately with a model
based on a synchronous hypothesis. Note that our model
does allow one tochoose a synchronous implementationthat
fits into the synchronous hypothesis by modeling the em-
bedded system as a singleCFSM, but of course does not
force one to choose such an implementation from the very
beginning.

The rationale for the introduction of this model is based on
the following considerations.

• A networkof components can express a complex behavior
while keeping the complexity of each component at a
reasonable level.

• The behavior specification is extended with the use of
arithmetic (or other) operations to be able to represent
embedded systems wherereal-valued variablesare con-
trolled.

• The reaction and sensing delays are useful in modeling
and constraining thetiming behaviorof heterogeneous
implementations (software may take ana priori unknown
number of clock cycles to execute a task represented by
a CFSM while a straightforward synchronous hardware
implementation takes only one cycle).

• An asynchronous communication mechanismis more ef-
ficient for representing the interaction among tasks in
an embedded system, where timing constraints are tight
and synchronous implementations may cause unnecessary
delays because the common pace of the system must be
slow enough to accommodate the slowest communication
link.

III. SOFTWARE GRAPHS

This section begins with the definition of an s-graph in
Section III-A. The synthesis and optimization of an s-graph
from a CFSM transition function is described in Section III-
B. Finally, software cost estimation based on the s-graph is
described in Section III-C.

840 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

A. S-Graph Definition

In this section, we define more precisely the control-flow
graph that we use as internal representation of theCFSM
transition function.

Definition 1: An s-graph is a directed acyclic graph
(DAG) with one source and one sink. Its vertex setcontains
four types of vertices:BEGIN, END, TEST, and ASSIGN.
The source has typeBEGIN, the sink has typeEND. All other
vertices are of typeTEST or ASSIGN. EachTEST vertex

has two children true and false .3 Each BEGIN or
ASSIGN vertex has one childnext only. Any nonsource
vertex can have one or more parents. An s-graph is associated
with a set of input and output variables ,
ranging over finite domains , respectively.

• EachASSIGN vertex is labeled with an output variable
, and a -valued function . In

the graphical representation of s-graphs, e.g., in Fig. 1,
we label such a vertex with to
indicate the intuitive meaning ofASSIGN vertices.

• Each TEST vertex is labeled with a predicate
, whose truth value determines which

child will be executed.

A simple s-graph is shown in Fig. 1. It corresponds to
the reactive behavior, represented in Esterel, as shown at the
bottom of the page.

1) To each valued input signal we associate two input
s-graph variables, one Boolean and one with the same
domain as the signal, while a pure input is associated
only with the Boolean input. For example, input signal
c is associated with:

• a Boolean variablepresent_c , indicating thatc
is present in the currentCFSM input snapshot;

• an integer variable?c , holding its value.

2) Similarly, to each valued output signal we associate two
output s-graph variables. For example, output signaly
is associated with Boolean variableemit_y indicating

3The implementation described in Section V allows more than two children.
The extension of the definitions and theorems to the more general case is
trivial.

Fig. 1. A simple s-graph.

whethery is being emitted in the current synchronous
reaction. Ify were not pure, it would also be associated
with an output variable holding the value to be emitted.

3) To each state variable we associate one input and one
output s-graph variable (no presence information is
associated with state variables, of course). For example,
input variablea and output variablea’ correspond to
the values of state variablea in the current and the next
reaction, respectively.

The Esterel statementawait c is implemented by the
TEST node checking ifpresent_c is 1. The outermost
loop is implemented by the RTOS, that will call the C code
synthesized from the s-graph every time it must execute a
reaction (aCFSM transition), i.e., every time it has at least
one present input event.

The s-graph model resemblesbranching programs([23],
[29]) andbinary decision diagrams. Both branching programs
andBDD’s are different from s-graphs because they allow:

• only single-variable predicates onTEST nodes;
• assignments to only a single output variable (as the last

level of nodes).

module simple: % CFSM name
input c:integer; % integer input signal
output y; % pure output signal
var a:integer in % local state variable

loop % loop forever
await c; % wait for c to be present
if a ?c then % if a is equal to the value of c

a 0;
emit y;

else
a a 1;

end if
end loop

end var
end module

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 841

We will see in Section III-B, though, that there is a close con-
nection between aBDD representation of aCFSM transition
function and an s-graph computing it.

The evaluation of the multioutput function computed by an
s-graph withBEGIN node , input variables, and output
variables uses the following algorithm. Letdenote a vector
of temporary variables, each uniquely associated with an input
or an output variable,4 and denote an uninitialized value.
procedureevaluate (v: vertex; :variable)
begin

for
if is an input then assign to it the corresponding
else

eval step (next(v),)
for

if is an output then assign it to the corresponding
return

end

procedureeval step (v:vertex; :variable)
begin

if is a TEST then
if then

eval step (true(v),)
elseeval step (false(v),)

else if is anASSIGN then

eval step (next(v),)
end

Definition 2: Let be an s-graph, and letbe partitioned
among input and output variables as assumed by procedure
evaluate.

is functional if every output variable :

1) is assigned byeval_step at least one defined (i.e.,
different from) value for each combination of values
of the input variables;

2) has a defined value whenever a predicate or a function
depending on is visited byeval_step.

It is easy to show that for a functional s-graph,evaluate
defines a completely specified I/O function, i.e., that

for all

It is also easy to check that anonfunctionals-graph denotes:

• either an incompletely specified function, if condition 1)
in Definition 2 is violated;

• or a relation between the input and the output variables,
if condition 2) in Definition 2 is violated. In this case,
we consider anondeterministicexecution ofevaluate, in
which the undefined value can mean any value in the
domain of the corresponding variable. Then an element
of belongs to the relation
if one possible choice in the evaluation of aTEST or
ASSIGN node with an undefined predicate or function
can yield it.

4In Section III–B2, we will show how to compute a heuristically “good”
association in order to minimize the s-graph size.

This fact can be used in optimizing the s-graph, as briefly
explained in Section III-B2.

B. S-Graph Implementation and Optimization

Software generation for a givenCFSM proceeds by generat-
ing the initial s-graph from the transition function, optimizing
the s-graph, and translating it into C code.

1) Handling of Extended FSM’s:The transition function
of a CFSM in general involves both Boolean (or symbolic
multivalued) and (bounded) integer variables. The former are
used in the reactive control part, while the latter are used in
the computational data part. This paper focuses on optimizing
control-dominated specifications and, hence, the discussion
in the remainder of this section is mostly devoted to an
efficient implementation of the reactive control component.
However, real specifications seldom consist completely of
reactive control. Hence, we adopt a mixed representation of
a CFSM.

In this paper, we represent theCFSM transition function as
a composition of the following:

• set of testson input and state variables;
• set of actions, which can be either output emissions or

assignments to state variables;
• the reactive functionmapping subsets of to subsets

of , represented by its characteristic function
.

For example, for the ESTEREL module in Section I tests
are present_c and a ?c , actions area’ a, a’ 0,
a’ a+1 , andemit_y , and the reactive function is

Tests and actions will be implemented as expressions in
the target language. The reactive function is just a Boolean
function, for which we construct an s-graph, as described in
the next section. The procedure produces an initial implemen-
tation, that can be optimized using a variety of techniques.

Conceptually, theCFSM transition function is executed in
three phases.

a) Tests are evaluated to determine the values of input
variables of the reactive function.

b) The s-graph of the reactive function is evaluated to
determine the values of its output variables.

c) Actions corresponding to output variables with value
one, are executed.

In practice, these three phases are interleaved. Test are evalu-
ated as they are needed during s-graph evaluation, and actions
are executed as soon as the corresponding variable is known
to be one.

Throughout this paper, we assume that expressions do not
have side effects and, hence, that their execution can be
reordered at will in order to optimize, e.g., code size as
described later. For the basicCFSM model as described

842 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

previously, the only expression that possibly has a side effect
is a division by zero, that may cause an arithmetic exception.
We will, hence, assume that division is implemented safely (by
first checking if the divisor is zero) and that a correctCFSM
never uses the result of a division by zero (even though it may
perform it as part of its evaluation).

2) Initial S-Graph Implementation:The initial s-graph is
built recursively starting from the reactive function, as follows.
The input and output variables (where
and) are visited based on an initialarbitrary ordering.
The assignment functions are computed based on the Shannon
decomposition . Procedurebuild is called
with an initial variable index of zero, and the functionset to
the reactive function. As we will see below, the choice of the
ordering influences the form of the final s-graph (specifically
the relative mix ofTEST and ASSIGN nodes).

procedurebuild (: variable; : index; : function)
begin

if then
create aBEGIN vertex
next build

else if then
create theEND vertex ;

else if is an input, then
create aTEST vertex with ;
true build
false build

else if is an output, then
create anASSIGN vertex labeled with
and
next() build

return reduce
end

We assume that thereduce function, called in the last step,
ensures that a graph with roothas no isomorphic subgraphs,
exactly as in BDD construction [10]. In particular,reduce
should eliminate all but oneEND node.

We can now show the correctness of this algorithm.
Theorem 1: Let be the charac-

teristic function of multioutput function , such that
, and let be theBEGIN vertex of the s-graph

returned by procedurebuild ().
Then, for all

Proof: Consider an assignment of values to
the input variables of , and an arbitrary output

.
Traverse the s-graph up to anASSIGN node labeled

with (from the definition of build , it follows there
exists exactly one such node on any path fromBEGIN
to END). Suppose, without loss of generality, that in
this traversal,TEST nodes labeled with the first input
variables andASSIGN nodes labeled with the first
output variables have been visited. Whenbuild is called
for node , . Hence,

(a function which
depends on the unvisited inputs only). The
value of is one if and only if (i.e., the
value assigned to is correct), because 1) by definition the
characteristic function is ;
2) the smooth function distributes over functions that
are independent of the smoothing variable:

if is independent of . 1) and 2) imply that

.
Note that the mapping from the transition function to the

s-graph is not unique since it is based on the ordering of the
variables. Section III-B3 discusses the influence of this choice
over the characteristics of the generated code.

Moreover, the input to this algorithm need not always be
a function, but could also be arelation (e.g., when nonde-
terminism is used to describe design freedom). In that case,
with a modification to theASSIGN function as indicated
below, there may be cases in which the value assigned to
still depends on (as well as on any input still to be tested).
The simplest case, when , corresponds to
a classical “don’t care”, because can be assigned any value
(including the cheapest option of no assignment) and still be
compatible with the characteristic function.

This flexibility can be exploited to minimize the size of the
s-graph, because theASSIGN label could in fact be any
function which satisfies the conditions shown at the bottom
of the page. Note that the two cases do not cover all possible
input combinations and, hence, we have some flexibility in
the implementation.

3) S-Graph Optimization:
a) Optimization by reordering:An s-graph can be opti-

mized by reordering the nodes to minimize size and/or depth.
In practice, it is more efficient to consider the ordering before

1) is one whenever

is an output is an output

is one

and

2) is zero whenever

is an output is an output

is zero.

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 843

building the complete graph. There are three major classes of
variable orderings.

i) Ordering each outputafter its support yields an s-
graph where all the decision computation is done by
TEST’s. ASSIGN nodes are labeled only with actions
on output variables (i.e., only with output variables
and constants in the reactive function representation).

ii) Ordering each outputbefore its support yields an s-
graph withoutTEST nodes.

iii) All other orderings yield an s-graph with a mix of
TEST and ASSIGN nodes.

b) Ordering outputs after their support:Our current im-
plementation uses the first ordering scheme. In that case, it is
easy to show that the structure of the s-graph corresponds
exactly to that of aBDD representingCFSM’s reactive
function. Informally,TEST nodes correspond toBDD nodes
associated with inputs of the reactive function, whileASSIGN
nodes correspond to the outputs. Therefore,optimization of
the s-graph can be done directly on theBDD representing the
CFSM characteristic function.

We heuristically optimize the size of thisBDD by dynamic
variable reordering, using the “sift” algorithm [31]. Sifting
moves one variable at a time up and down in the ordering, and
freezes it in the position where theBDD size is minimized.
In our case we must add the constraint thatno output can sift
before any input in its support.

The s-graph is built using the same ordering as the sifted
transition functionBDD and, thus, it has the following.

• Each input variable is tested only once per path. This
provides the minimum depth s-graph, and thus implies a
heuristicallyminimum execution time.

• The ordering of the variable tests is heuristicallyoptimal
for code size, in the sense that no single variable can be
moved in the ordering while decreasing the size of the
BDD and, hence, of the s-graph.

c) Ordering outputs before their support:The second or-
dering scheme, which is implemented in the current version
of the Esterel compiler ([9]), can be implemented by directly
building a Boolean circuit implementing the reactive func-
tion. The Boolean circuit is optimized using, e.g., the logic
synthesis algorithms described in [33]. The s-graph can now
be constructed as a string ofASSIGN vertices, one for each
action. For example, the s-graph in Fig. 1 would be reduced
to four ASSIGN vertices with the following labels5:

The s-graph obtained in this way has noTEST vertices.
Hence, all its executions take exactly the same time, if we
ignore the effects of the memory hierarchy and of different ex-
ecution times for the same arithmetic operation with different
input data. This property is very important for highly critical

5The value ofITE(x,y,z) is y if x is 1 andz , otherwise.

real-time systems where absolute exactness in execution time
prediction is a key for safe operation.

Experimentally we have seen that this method of s-graph
construction, even though it could in principle offer better
opportunities than the first one due to the more general sharing
properties of Boolean expressions with respect toBDD’s, in
practice yields larger and slower code. We did not experiment
with intermediate orderings, and we leave this exploration to
future work.

d) Optimization by collapsing test nodes:We have also
experimented with optimization ofTEST nodes with respect
to the first ordering scheme, by allowing eachTEST node
function to depend on more than one variable. Just as Boolean
logic can be made more efficient by factoring out common
subexpressions, both the size and speed of code generated
from the s-graph can potentially be improved by judiciously
combiningTEST nodes and, thereby, factoring out common
test expressions.

The algorithm performs a depth-first search from the BEGIN
node to generate closed subgraphs. A closed subgraph is one
in which all incoming edges share a common parent; a closed
subgraph ofTEST nodes can be collapsed without changing
the functionality of the s-graph. Once a set of subgraphs is
determined, each is replaced by a singleTEST node. The C-
code is generated from the Boolean function associated with
each collapsedTEST nodes in two different ways:

i) by generating an if-then-else statement based on the
truth table;

ii) by generating a Boolean network implementing the
required function. In this case, we create a temporary
variable in the C-code for each internal variable in the
Boolean network, and an if-then-else statement in the
C-code for each node function in the Boolean network.

In a series of experiments including Boolean network opti-
mization and two-level and multilevel C-code generation, we
never observed an improvement in the final running time or
size of the generated code. As a result, we do not currently
use TEST node collapsing.

4) S-Graph to C Translation:The s-graph obtained ac-
cording to one of the procedures described in the previous
section can now be translated into C code to be compiled
on the target machine. There are a number of optimization
operations that can be performed on the s-graph before
final code generation. Some of them, such as common
subexpression factoring, etc., are common to general-purpose
compilers and will not be described in detail here.

The final translation of the s-graph into C (or any other
high-level language) is straightforward due to the direct corre-
spondence between s-graph node types and basic C primitives.
The fact that the code is so unstructured may hinder its
readability, but allows greater efficiency. In our codesign
methodology the designer should not see this low-level, just
like the user of a general-purpose compiler should never
have to look at the assembly code. The generated C code
contains compiler directives that relate directly the object code
with the source languagefiles that were used for theCFSM
specification (e.g., using Esterel or Verilog). This allows any

844 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

source level debugger used for the embedded software to
display directly the original code and variables.

A TEST node is translated to a string ofif or switchstate-
ments and an appropriate number ofgotos. A target-dependent
parameter can be used to specify how many children aTEST
node must have in order to make anif-based implementation
more convenient than aswitch-based one.6 An ASSIGN node
is translated to an assignment. Appropriate declarations of
local and global variables are also inserted into the output
code.

Note that this code is very different from standard hand-
written structured code, and is almost like aportable assembly
code. We could also produce true assembly code from an
s-graph, but this would require to solve too many processor-
dependent issues, like instruction selection, register assign-
ment, and so on.

C. Software Cost and Performance Estimation

Hardware/software partitioning and software synthesis for
real-time embedded systems require accurate and quick esti-
mates of code size and of minimum and maximum execution
time.

The following two aspects of the problem must be consid-
ered:

1) the structure of the code, e.g., loops and false paths7;
2) the system on which the program will run, including

the CPU (instruction set, interrupts, etc.), the hardware
architecture (cache, etc.), the operating system, and the
compiler.

The s-graph structure is very similar (as shown in Section
III-B4) to the final code structure and, hence, helps in solving
the problem of cost and performance estimation as follows:

• each vertex in an s-graph is in one-to-one correspondence
with a statement of the synthesized C code;

• the form of each statement is determined by the type of
the corresponding vertex.

This means that the resulting C code is poorly structured from
a user’s point of view, but is simple enough that the effects of
the target system on the execution time and code size of each
vertex type can be easily determined.

Timing analysis is simple because s-graphs are acyclic:
looping is dealt with at the operating system level. Moreover,
false paths can be determined with a good degree of accuracy
from the structure of theCFSM network, e.g., by computing
event incompatibility relations.

Cost estimation can, hence, be done with a simple traversal
of the s-graph. Costs are assigned to every vertex, representing
its estimated execution cycle requirements and code size
(including most effects of the target system).

1) Cost Estimation on the S-Graph:Our estimation method
consists of first determining the cost parameters for the target
system and then applying those parameters to the s-graph to

6This is done for very simple compilers that do not have the capability
of performing this optimization. Such compilers are indeed encountered with
standard micro-controllers.

7A path in an s-graph is false if it can never be executed, e.g., due to
conflicting Boolean conditions.

compute the minimum and maximum number of execution
cycles and the code size.

Each vertex is assigned two cost parameters, one for timing
and one for size, which depend on the type of the vertex and
the type of the input and/or output variables of the vertex.
Edges may also have an associated cost, as thethenandelse
branches of anif statement generally take different times to
execute. Currently, we use 17 cost parameters for calculating
execution cycles, 15 for code size, and four for characterizing
the system (e.g., the size of a pointer).

The parameters for execution time or code size correspond
to the kind of statements generated from a node in the s-graph.
These are as follows:

• a TEST node detecting the presence of a signal (which
yields an RTOS function call);

• a TEST node branching on a multivalued expression
(which yields anif or switch statement);

• an ASSIGN node emitting a signal (which yields an
RTOS call),

• an ASSIGN node which assigns an expression to a
variable (which yields an assignment).

In the case of aTEST node with two outgoing edges, the cost
parameters for each edge (i.e., the true case and the false case)
are stored explicitly. For aTEST node which has more than
three edges, the execution time for the-th edge is represented
as , by using two parameters
and .

The other parameters for the execution time and code size
are defined for:

• calling and returning from a C function with a given
number of local variables and parameters;

• a branch operation (generated from agoto statement);
• initialization of a local variable;
• average execution time and size for predefined soft-

ware library functions (currently about 30 arithmetic,
relational and logical functions, such asADD(x1,x2),
OR(x1,x2), EQ(x1,x2) ,);

• the size of pointers;
• the size of integer variables.

The functions used in the data-flow graph portion of a
CFSM can also be user-defined. A user-derived cost for those
function should be given by hand to the estimation algorithm.

The cost parameters are determined for each target sys-
tem (CPU, memory/bus architecture, compiler) with a set
of sample benchmark programs. These programs are written
in C and consist of about 20 functions, each with 10–40
statements. Eachif or assignment statement which is contained
in these functions has the same style as one of the statements
generated from aTEST or ASSIGN vertex. The value of
each parameter is determined by examining the execution
cycles and the code size of each function. A profiler or an
assembly-level code analysis tool, if available, can be used
for this examination. We are currently using an internally
developed cycle calculator for the Motorola 68HC11, the
pixie tool for MIPS R3000 CPU’s, and the profiling tool pro-
vided with a commercial in-circuit emulator for the Motorola
68 332.

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 845

The calculation of software performance can be done dy-
namically or statically after tagging each line of code with
its estimated execution time. Dynamic calculation can be
done with realistic inputs by using the simulation environment
described in [30], where both the structure of the synthesized
code (e.g., false or seldom executed paths) and the architecture
of the target system (e.g., preemptive scheduling policy and
interrupts) can be considered. Static calculation, useful for
example for worst case execution time analysis in the context
of real-time scheduling, can be done by using graph traversal
algorithms. Assume that is the number of edges in the s-
graph and the number of nodes. The minimum execution
cycles can be calculated by finding a minimum-cost path based
on Dijkstra’s shortest path algorithm from theBEGIN to
the END vertex of the s-graph . The maximum
execution cycles can be calculated by finding a maximum-cost
path based on the PERT longest path algorithm . The
code size, useful for ROM cost estimation, can be calculated
simply by summing the code size parameters for all the
vertices of the s-graph ().

IV. GENERATION OF THEREAL-TIME OPERATING SYSTEM

In Section III we described the software generation process
for individual CFSM’s. To implement a valid behavior of a
networkof CFSM’s, additional code is needed to perform the
following functions:

• schedule individualCFSM’s implemented in software
(sw-CFSM’s) such that each one is executed in a timely
manner;

• provide a mechanism for event emission and detection
between sw-CFSM’s;

• provide a mechanism for transferring events between
CFSM’s implemented in hardware (hw-CFSM) and those
implemented in software;

• ensure that consumption of input events by a sw-CFSM
is consistent with the semantics described in Section II-D.

We propose to synthesize this code automatically. We call
this codereal-time operating system(RTOS), because it per-
forms communication and scheduling functions traditionally
performed by an operation system.

A. Scheduling of sw-CFSM’s

Every sw-CFSM’s can be in one of two states:disabled
(when there are no events at its inputs) orenabled (when
such events exist). A sw-CFSM’s becomes enabled when any
of its input events occur. An enabled sw-CFSM needs to
be executed. Once it finishes its execution, a sw-CFSM is
disabled.

The RTOS must keep track of the state of every sw-
CFSM. Moreover, it must decide which one of the (possibly
many) enabled sw-CFSM’s to execute. The set of rules used
to make this decision is called thescheduling policy. In
the current implementation, a user chooses off-line one of
the several available scheduling policies (round-robin, static-
priority based, with or without preemption). The user can also
instruct the system to bypass the RTOS and “chain” certain

executions ofCFSM’s into a single task, thus reducing sched-
uling and communication overhead. We expect that eventually
it will be possible to automatically select a scheduling policy
which provably meets all the timing constraints, based on the
frequency of events in the environment and on the estimated
execution times of the sw-CFSM’s and of the RTOS ([4]). In
any case, once a scheduling policy is chosen, C (and some
assembly) code that implements that policy at run-time is
automatically generated [15].

B. Communicating Events Between sw-CFSMs

When a sw-CFSM emits an event, every other sw-CFSM
sensitive to that event must be informed of it and enabled. To
every CFSM we assign a set of private flags, one for each
input, to indicate whether that event has occurred since the
previous transition. ACFSM is scheduled to run by the RTOS
whenever it has at least one input flag set (its actual execution
may be delayed byCFSM’s with higher priority, according
to the scheduling policy). Once it is run, theCFSM checks
its input flags to decide (using the s-graph) which one (if any)
of its transitions to execute. Thus, the emission of an event
consists of setting all the appropriate flags and enabling all
the appropriate tasks, and the detection of an event is a simple
check on the status of a flag.

C. Communicating Events Between hw- and sw-CFSM’s

Events emitted by a sw-CFSM and consumed by a hw-
CFSM are communicated through a memory mapped in-
put–output (I/O) port of the micro-controller. Events emitted
by a hw-CFSM are delivered to a sw-CFSM by one of the
following mechanisms.

Polling: In this case, a hw-CFSM only sets an ap-
propriate bit on an I/O port of the micro-
controller. An automatically generated polling
routine is periodically scheduled to execute
and if it finds the bit set, it will execute the
event emission routine. This solution has mini-
mal hardware requirements, but does introduce
an additional delay because an event cannot
be detected by a sw-CFSM before the polling
routine is executed.

Interrupts: In this case, if a hw-CFSM wants to emit an
event, it requests an interrupt. When the inter-
rupt is serviced, the corresponding interrupt-
service routine (ISR) is executed. By default,
an ISR contains only an event emission rou-
tine. However, the user has the option to
specify that for designated events, all sw-
CFSM’s sensitive to that event are also to be
executed inside the ISR. In this way, the most
critical tasks can be given immediate attention.

By default, all events are communicated through interrupts, but
a user may specify any number of events to be polled. This
will typically depend on the interrupt handling capabilities of
the processor used in the implementation.

846 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

For completeness, let us note that communicating events be-
tween hw-CFSM’s is easily accomplished via buffer registers
(one bit for each input event).

D. Consumption of Events

A CFSM is enabled whenever any of its input events occur.
Thus, it may happen that the software routine implementing
a CFSM is executed, but no transitions are enabled, and thus
none is executed (i.e., noASSIGN nodes are visited while
traversing the s-graph from theBEGIN to theEND node). The
RTOS ensures that in this case input events are not consumed,
but rather preserved for the next execution.

As described in Section II, aCFSM may execute a transition
if at some moment in time the set of input events matches one
of those specified by the transition relation. However, since
a CFSM checks input events in sequence (determined by the
ordering ofTEST nodes), it may happen that aCFSM will
detect a particular set of events at its inputs that does not
correspond to any single time point. Consider, for example, a
CFSM with two input events and , and assume that the
CFSM first checks its presence flag and then itspresence
flag. In a straightforward (and incorrect) implementation, the
following sequence may occur:

1) the CFSM checks the flag and finds that has not
occurred,

2) the CFSM is interrupted,
3) occurs,
4) occurs,
5) the CFSM continues the execution, finds that has

occurred and executes a transition which is enabled only
if has occurred and has not.

Such a behavior is erroneous because at no point in time was
it true that had occurred and had not. To avoid this
problem, the generated RTOS ensures that once aCFSM starts
reading its input event flags, no new flags can be set until the
CFSM finishes its execution. However, any events occurring
in that time period are remembered and can be consumed in
the following execution.

E. Comparison with Commercial RTOS’s

Instead of automatically generating an RTOS, it is also
possible to use a commercially available one. For this we only
need to implement the event emission and detection mecha-
nisms using the event flag services provided by the RTOS,
and provide the RTOS scheduler with enough information
(usually task execution times and deadlines) to enable it to
perform its duties. However, we believe that our approach
has several advantages. First, since the RTOS has a fixed
communication structure (neither the number of tasks nor the
sensitivity of tasks to events changes over the lifetime of the
generated RTOS), the emission and detection of events can be
extremely efficiently implemented, and in some cases (when a
task is sensitive to a single event) completely avoided. Second,
since only the necessary functionality is generated, the size
of the generated RTOS is often much smaller than the size
of commercial ones. Finally, in our approach one can easily

TABLE I
RESULTS OF THECOST/PERFORMANCE ESTIMATIONPROCEDURE

TABLE II
EFFECT OF DIFFERENT TEST VARIABLE ORDERINGS

experiment with tradeoffs, e.g., between scheduling policies or
different event input mechanisms (polling versus interrupts).
Commercial RTOS’s typically do not provide such a flexibility.

V. EXPERIMENTAL RESULTS

We first report the results of the cost/performance estimation
procedure and of the s-graph synthesis procedure applied to a
subset of a car dashboard control system. We then compare a
manual design and the results of software synthesis for a real
industrial example, a shock absorber controller.

In all cases, the numbers are given for a Motorola 68HC11
micro-controller. They are obtained using our estimation pack-
age, as well as by actual measurements done on the output of
the INTROL C compiler for the 68HC11. The timing columns
are given in terms of the maximum number of clock cycles for
a single transitionof eachCFSM and the code size columns
are given in terms of bytes. All the results include both the
control and the data part.

A. The Dashboard Controller

The example considered here is a subset of the functionality
of a dashboard controller, that implements the computational
chain from the wheel and engine speed sensors to the pulse
width-modulated outputs controlling the gauges.

Table I summarizes the result of the cost estimation proce-
dure, and compares it against an exact measurement of the
code size and timing (maximum number of clock cycles),
performed by analyzing the compiled object code.

Table II shows the effect of the different orderings in
procedurebuild on the software size. The timing remains

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 847

TABLE III
COMPARISON OF SOFTWARE SYNTHESIS WITH ESTEREL

approximately the same, since only the order of the tests is
changed. In both cases, the computed function is exactly the
same. The only difference is the order of the variables, which
affects the number ofTEST nodes. In both cases we use
dynamic reordering by sifting [31] (which is known to be
more efficient than the static methods used, for example, in
[6]). In the first case we restrict sifting so that all outputs
appear after all inputs in the BDD. In the second case the
constraint is relaxed as discussed in case 1 in Section III-B3,
forcing each output to appear only after its own support. The
difference in size is due to the sharing among subgraphs, which
can be performed better in the second case. As a reference,
we also compare the result with an implementation which uses
a two-level multiway jump structure. The first jump is done
based on the current state, the second jump is done based
on the concatenation of all the decision variable into a single
integer. The jumps are followed by an appropriate sequence
of ASSIGN’s. This simple implementation (similar to what is
often done during structured hand-coding of reactive systems)
performs better than the naive ordering, but worse than the
optimized decision graph. The results are in bytes of code,
after compiling with the -O option.

We have also tried to compile the same code using the MIPS
compiler, which has much better optimization capabilities than
the INTROL compiler, and the results are similar. This demon-
strates that our BDD-based code restructuring optimizations
are beyond the optimization capabilities of general-purpose
compilers.

Finally, we compared our software implementation to that
produced by ESTEREL v5 for the dashboard. These last
experiments were done by compiling all the code on a DEC
ALPHA and running a large simulation file. The results are
shown in Table III. The software simulation time is given in
cycles as reported bypixie , and the software size in bytes
as reported bysize . Only the reactive core code is compared
(the simulation interface code is excluded), and the numbers
for the dashboard modules have been summed to obtain the
results shown. The final column gives the total elapsed time
to generate the software implementation. Note that POLIS
uses ESTEREL to process theCFSM’s individually, while
the ESTEREL compiler (shown in the last two lines) processes
the whole design into a singleFSM. Moreover, the majority
of the time for the ESTEREL synthesis was taken by the
C-compiler.8

The ESTEREL_OPT row shows the results using the
Boolean circuit optimization inside the v5 compiler. This
technique corresponds to ordering outputs before inputs in

8The C-code was always compiled with the -O option, and the -O limit
flag had to be significantly increased in order to utilize this option on the
ESTEREL code.

the approach described in Section III-B3, and shows that
the possible saving in code size due to the better sharing
opportunities offered by Boolean functions in this case does
not help (nor it does in any of the practical cases that we
have examined so far).

Our synthesis used the default variable ordering scheme,
with single-pass dynamic variable ordering (sift) under the
restriction that each output appear after its support.

B. The Shock Absorber Controller

We have also performed a complete redesign of a real
example, a shock absorber controller. No detailed module-by-
module comparison with the manual design size is possible,
due to a different functional level organization chosen for the
redesign.

The code size of the synthesized implementation is 46 639
bytes of ROM and 10 229 bytes of RAM, including the RTOS
(round-robin scheduler and I/O drivers), on a 68HC11. The
hand-designed implementation had a ROM size of 32 Kbytes
and a RAM size of 8 Kbytes.

The performance of the synthesized implementation was
comparable to that of the manual implementation, since both
satisfied the 12 s I/O latency required by the specification.

The increase in ROM and RAM size is due mostly to the
fact that all variables used by an s-graph are copied upon entry
in the corresponding routine, to provide a safe implementation
of the update of their next-state values. We are working on a
data flow analysis step that will allow us to detectwrite-before-
read cases that require such buffering, and reduce ROM and
RAM, as well as CPU time, when no such buffering is needed
to correctly implement theCFSM semantics.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new methodology for
the synthesis of software for embedded real-time control-
dominated systems. The methodology exploits the use of a
FSM specification, and unlike classical compilation algorithms
starts from a description of thefunctionto be computed, rather
than from one operational implementation of it. This allows
the use of powerful optimization algorithms based on Boolean
function manipulation methods.

The internal representation that we use is also the basis of a
quick but fairly precise cost- and performance-estimation pro-
cedure. The procedure is based on assigning cost parameters
to the control/data-flow graph, and can be easily customized
for different CPU’s and runtime environments.

In the future we plan to exploit the cost-estimation pro-
cedure to perform global optimizations aimed at satisfying
timing and size constraints, with a much finer tuning than
is currently possible. Moreover, the current code size mini-
mization algorithm uses a single order for variables along all
s-graph paths. While this is required in BDD’s in order to
ensure canonicity of representation, it is not clear whether it
helps in the software synthesis case. We are thus planning
to explore unordered variants of decision diagrams for our
software optimization [29]. We are also exploring the coupling
between scheduling algorithms and code synthesis, to allow

848 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

the scheduling procedure to transmit user-defined constraints
to the compilation steps.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers: Principles, Tech-
niques and Tools. Reading, MA: Addison-Wesley, 1988.

[2] S. B. Akers, “Binary decision diagrams,” inIEEE Trans. Comput., vol.
C-27, pp. 509–516, June 1978.

[3] P. Ashar and S. Malik, “Fast functional simulation using branching
programs, presented atInt. Conf. Computer-Aided Design, Nov. 1995.

[4] F. Balarin and A. Sangiovanni-Vincentelli, “Schedule validation for
embedded reactive real-time systems,” presented atDesign Automation
Conf., June 1997.

[5] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,
A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-
Vincentelli, Hardware-Software Co-Design of Embedded Systems—The
POLIS Approach. Norwell, MA: Kluwer Academic, 1997.

[6] R. Bergamaschi, R. Camposano, and M. Payer, “Allocation algorithms
based on paths,”Integration, the VLSI J., vol. 13, pp. 283–299, 1992.

[7] G. Berry,The Constructive Semantics of Pure Esterel, submitted for pub-
lication; Available: FTP://www.inria.fr/meije/esterel/papers/ construc-
tiveness.ps.gz.

[8] G. Berry, P. Couronn´e, and G. Gonthier, “The synchronous approach to
reactive and real-time systems,”Proc. IEEE, vol. 79, Sept. 1991.

[9] G. Berry, 1996, see http://cma.cma.fr/Esterel.
[10] R. Bryant, “Graph-based algorithms for boolean function manipulation,”

IEEE Trans. Comput., vol. C-35, pp. 677–691, Aug. 1986.
[11] J. Buck, S. Ha, E. A. Lee, and D. G. Masserschmitt, “Ptolemy: A frame-

work for simulating and prototyping heterogeneous systems,”Int. J.
Comput. Simulation, special issue on Simulation Software Development,
Jan. 1990.

[12] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “A formal specification model for
hardware/software codesign,” Univ. Calif. Berkeley, CA, Tech. Rep.
UCB/ERL M93/48, June 1993.

[13] , “A formal specification model for hardware/software codesign,”
presented at Int. Workshop Hardware-Software Codesign, 1993.

[14] P. Chou, E. Walkup, and G. Borriello, “Scheduling for reactive real-time
systems,”IEEE Micro, vol. 14, pp. 37–47, Aug. 1994.

[15] D. Engels, “Real-time task level scheduling in the POLIS co-design
environment,” Master’s thesis, Univ. California, Berkeley, 1995.

[16] D. D. Gajski, Ed.,Silicon Compilation, Reading, MA: Addison-Wesley,
1988.

[17] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Program implemen-
tation schemes for hardware-software systems,”IEEE Comput., vol. 27,
pp. 48–55, Jan. 1994.

[18] W. A. Halang and A. D. Stoyenko,Constructing Predictable Real Time
Systems. Norwell, MA: Kluwer Academic, 1991.

[19] N. Halbwachs,Synchronous Programming of Reactive Systems. Nor-
well, MA: Kluwer Academic, 1993.

[20] D. Har’el, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A Shtull-Trauring, and M. Trakhtenbrot, “STATEMATE: A working
environment for the development of complex reactive systems,”IEEE
Trans. Software Eng., vol. 16, no. 4, Apr. 1990.

[21] D. Ku and G. De Micheli,High Level Synthesis of ASIC’s Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer Academic,
1992.

[22] L. Lavagno, P. McGeer, A. Saldanha, and A. Sangiovanni-Vincentelli,
“Timed Shannon circuits: A power efficient design style and synthesis
tool,” in Proc. Design Automation Conf., June 1995, pp. 254–260.

[23] C. Y. Lee, “Representation of switching functions by binary decision
programs,”Bell Syst. Tech. J., vol. 38, pp. 985–999, 1959.

[24] C. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,”J. ACM, vol. 20. no. 1, pp. 44–61,
Jan. 1973.

[25] S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-Vincentelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” inProc. Int. Conf. Computer-Aided Design, Nov. 1988,
pp. 6–9.

[26] P. Marwedel and G. Goossens, Eds.,Code Generation for Embedded
Processors. Norwell, MA: Kluwer Academic, 1995.

[27] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on high-
level synthesis,” inProc. 25th ACM/IEEE Design Automation Conf.,
Anaheim, CA, 12–15 June 1988, pp. 330–336.

[28] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-Vincentelli, and
P. Scaglia, “Fast discrete function evaluation using decision diagrams,”
presented atInt. Conf. Computer-Aided Design, Nov. 1995.

[29] C. Meinel, Modified Branching Programs and Their Computational
Power. New York: Springer-Verlag, 1989.

[30] C. Passerone, L. Lavagno, M. Chiodo, and A. Sangiovanni-Vincentelli,
“Fast hardware/software co-simulation for virtual prototyping and trade-
off analysis,” presented atDesign Automation Conf., Anaheim, CA, June
1997.

[31] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” presented atInt. Conf. Computer-Aided Design, Santa Clara,
CA, Nov. 1993.

[32] R. Saracco, J. R. W. Smith, and R. Reed,Telecommunications Sys-
tems Engineering Using SDL. Amsterdam, The Netherlands: North-
Holland/Elsevier, 1989.

[33] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Univ.
California. Berkeley, Tech. Rep. UCB/ERL M92/41, May 1992.

[34] T. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” presented atEuropean Design and Test Conf., Paris, France,
Mar. 1996.

[35] W. Wolf, A. Takach, C.-Y. Huang, and R. Manno, “The princeton
university behavioral synthesis system,” presented atDesign Automation
Conf., Anaheim, CA, June 1992.

[36] S. Y. Yee, “An esterel to SHIFT compiler for a hardware/software
codesign environment,” Master’s thesis, Univ. Claifornia, Berkeley,
1994.

Felice Balarin (S’90–M’95) received the Ph.D. de-
gree in electrical engineering and computer science
from the University of California, Berkeley in 1994.

Since then, he has been a Research Scientist at the
Cadence Berkeley Laboratories, Berkeley, CA. His
research is focused on development and application
of formal methods to design, verification and timing
analysis of systems consisting of both hardware and
software.

Massimiliano Chiodo (M’91) received the degree
in physics from the Universita’ degli Studi, Milan,
Italy.

He worked for various companies in the em-
bedded software field until 1989 when he joined
Magneti Marelli, Turin, Italy. While with Magneti
Marelli he spent several months as Visiting In-
dustrial Fellow at the University of California at
Berkeley’s CAD Group where he worked on formal
verification and hardware/software co-design. In the
summer of 1995 he joined Cadence Design System,

San Jose, CA, where he works in the software/hardware co-design area.

Paolo Giusto received the Doctor of Information Sciences from the Univer-
sita’ di Torino, Italy, and received his MSc degree in hardware engineering
from CEFRIEL in Milan.

He works for Cadence Design Systems, Sunnyvale, CA, as a member of the
Design Methodology Team for the Co-Design Technology Group. He was a
Visiting Industrial Fellow for Magneti Marelli, at the University of California,
Berkeley from 1992 to 1994 where he worked on hardware-software co-
design.

BALARIN et al.: SYNTHESIS OF SOFTWARE PROGRAMS FOR EMBEDDED CONTROL APPLICATIONS 849

Harry C. Hsieh (S’93) received the B.S. degree
from University of Wisconsin, Madison, and the
M.S. degree from Stanford University, Stanford,
CA. He is currently a Ph.D. degree candidate in
the Electrical Engineering and Computer Science
Department at the University of California, Berke-
ley.

He has been a Member of the Technical Staff
at Hewlett-Packard’s Mainline Systems Laboratory,
Cupertino, CA, and has worked at IBM’s Federal
System Division and T.J. Watson Research Center,

Hawthrone, NY. His primary research interests include system-level design
methodologies, logic synthesis, and design of embedded systems.

Attila Jurecska received the M.S. degree in elec-
trical engineering from the Technical University of
Budapest, Hungary, and the M.S. degree in infor-
mation technology from CEFRIEL, Milan, Italy, in
1990 and 1992, respectively.

From September 1992 to December 1997, he was
employed by Magneti Marelli, Turin, Italy as a
Software Engineer working on hardware-software
co-design of embedded controllers. From August
1994 to December 1996, he was a Visiting Industrial
Fellow for Magneti Marelli at the University of

California, Berkeley. He worked on the development of Polis hardware-
software co-design environment with the hardware-software co-design group
of the University of California, Berkeley. Since March 1998, he has worked
for Synopsys, Inc., Beaverton, OR, as a Senior R&D Engineer in the Eagle
Technology Group. His present research interest includes hardware-software
co-design and co-verification.

Luciano Lavagno (S’88–M93) graduatedmagna cum laudein electrical
engineering from Politecnico di Torino, Torino, Italy in 1983. In 1992, he
received the Ph.D. degree in electrical engineering and Computer Science
from the University of California at Berkeley (U.C. Berkeley).

From 1984 to 1988, he was with CSELT Laboratories, Torino, Italy, where
he was involved in an ESPRIT project that developed a complete high-level
synthesis system. In 1988, he joined the Department of Electrical Engineering
and Computer Science of the University of California at Berkeley, where
he worked on logic synthesis and testing of synchronous and asynchronous
circuits. Between 1993 and 1998, he was the architect of the POLIS project,
developing a complete hardare/software co-design environment for control-
dominated embedded systems. He has also been a consultant for various
EDA companies, such as Synopsys and Cadence. He is currently an Associate
Professor at the University of Udine, Udine, Italy, and a Research Scientist at
Cadence Berkeley Laboratories. His research interests include the synthesis
of asynchronous and low-power circuits, the concurrent design of mixed
hardware and software systems, and the formal verification of digital systems.
He is the author of a book on asynchronous circuit design and the co-author
of a book on hardware/software co-design of embedded systems. He has
published over 80 journal and conference papers.

In 1991 Dr. Lavagno received the Best Paper award at the Design
Automation Conference in San Francisco, CA. He has served on the technical
committees of several international conferences in his field (the Design
Automation Conference, the International Conference on Computer Aided
Design, and the European Design Automation Conference).

Alberto Sangiovanni-Vincentelli, (M’74–SM’81–F’83) for a photograph and
biography, see p. 190 of the February 1999 issue of this TRANSACTIONS.

Ellen M. Sentovich received the Ph.D. degree in
electrical engineering and computer science from
the University of California, Berkeley, in 1993.

Since 1994, she has been with Cadence Berkeley
Laboratories, Berkeley, CA. From March 1995 to
October 1996 she was on sabbatical working with
the MEIJE project, which is shared between the
Ecole des Mines de Paris’ Centre de Mathematiques
Appliquees and INRIA, the French national com-
puter science research lab. While there, she worked
with the Esterel team on specification, analysis, and

synthesis of reactive systems. Since returning to Cadence, her research has
focused on system-level design issues, including specification and languages,
models of computation, semantics, synthesis, and optimization.

Kei Suzuki received the B.S., M.S., and Dr. Eng.
degrees from Waseda University, Tokyo, Japan, in
1984, 1986, and 1989, respectively all in electrical
engineering.

In 1989, he joined the Central Research Labora-
tory, Hitachi, Ltd., and is now a Senior Researcher.
From 1993 to 1994, he was a Visiting Industrial
Fellow at the department of Electrical Engineering
and Computer Sciences, University of California,
Berkeley. His research interests include system-
level design methodology and hardware/software

codesign.
Dr. Suzuki is a member of ACM, the Institute of Electronics, Information

and Communication Engineers of Japan, and of the Information Processing
Society of Japan.

