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Abstract— Software components for embedded reactive network management and control functions. These embedded
real-time applications must satisfy tight code size and run- systems are integrated onto the physical system itself and
time constraints. Cooperating finite state machines provide niqgen from the user. The implementation of such systems
a convenient intermediate format for embedded system f full hard fi i h Il th
co-synthesis, between high-level specification languages andf@n vary irom a full hardware configuration, where a e
software or hardware implementations. We propose a software tasks to be performed by the embedded system are translated
generation methodology that takes advantage of a restricted into a suitable set of customized integrated circuits, to a full
class of specifications and allows for tight control over goftware implementation, where all the tasks are implemented
the implementation cost. The methodology exploits several 55 goftware routines run on a standard component, such
techniques from the domain of Boolean function optimization. . diaital si | DSP
We also describe how the simplified control/data-flow graph as _a _mlcroprocessor or a |g|a s_lgna prqcessor ( : )-
used as an intermediate representation can be used to accurately While in the past hardware configurations dominated the field,
estimate the size and timing cost of the final executable code. today most of the applications are implemented in a mixed

Index Terms—Boolean functions, estimation, finite state ma- configuration, yvhere software has Fh.e' lion's share. This shift
chines, high-level synthesis, optimizing compilers, real-time sys- has been basically due to the flexibility offered by software
tems scheduling, software performance. implementations and to the increasing importance of time-to-

market considerations in engineering design.

I INTRODUCTION B. The Problem: Software Synthesis

A. The Context: Embedded Systems The bottleneck for t_he implementation of embedded systems
has long been considered the development of software, its

Embedded systenase electronic components of a physicajebugging, and its integration with the hardware components.

system such as a vehicle, a chemical plant, a nuclear plantg@icently, it has been pointed out that the capability of ana-
a communications system, that typically: lyzing a system before a particular technology is chosen as

» monitor variables of the physical system such as temper-target implementation is of paramount importance to have
ature, pressure, traffic, chemical composition; “right-for-the-first-time” designs.

» process this information making use of one or more This scenario fueled the quest for a design methodology
mathematical models of the physical system; that favors system-level descriptions of functionality and con-

* output signals that influence the behavior of the physicsiraints, technology-independent verification, and automati-
system to control its function and optimize its perforeoptimized mapping from the system-level descriptions and
mance. constraints to software and hardware implementations. While

Embedded systems cover a broad range of applicatiohgydware synthesis has been the object of considerable atten-

from microwave ovens and watches to telecommunicatidi®n over the recent past, much less attention has been devoted
to the process of software synthesis.
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C or assembly code generation capabilities of DSP grapkbnstructs. For example, features like recursion, pointers and
cal programming environments, such as Ptolemy ([11]), &dop bounds that can be determined only at run-time, are not
graphical finite state machind=$M) design environments, used, because they are hard (and in general even impossible)
such as StateCharts ([20]), or of synchronous programmitgyimplement in hardware. This software lends itself well to
environments such as Esterel, Lustre, and Signal ([19]). aggressive, global optimizations as are traditionally applied to
This notion of software synthesis received much attentidrardware. As mentioned previously, we refer to this creation
in the early 1970’s but results were mainly theoretical withnd optimization of restricted software as “software synthesis”
little practical impact on software design practices. The lagkther than “software compilation.” We apply optimization
of results of practical importance was mainly caused kgchniques derived from the hardware optimization area to
the very wide range of possible applications that requirexptimization of embedded software.
heterogeneous models of computation and constructs, such
as pointers, memory allocation, and recursion, that were tB0 Restricted Application Domains

difficult to manipulate efficiently in an automatic fashion. When we deal with specialized applications, such as DSP,

_ the range of different constructs to consider is much more
C. Compiler Technology restricted than in general computing. Hence, more aggressive

On the other hand, Compi”ng a high-|eve| |anguage inl@)timizaﬁon is pOSSible, and has indeed been attempted,
machine instructions has been the enabling technology #¢lding interesting results [26].
the extended use of computers for all kinds of applications. Most of the embedded systems applications do not require a
The progress of compiler technology has been exciting ovde variety of coding constructs. We strongly believe that in
the past 20 years. Compilers translate high-level construlids class of systems, automatic optimization and verification
into an optimized set of machine instructions. This translatii®n be pushed to a level that is unprecedented in “standard”
occurs in two basic steps: mapping from high-level construcg@mpiler and operating system technology.
into intermediate code that is often processor independent, and
mapping of the intermediate code into the actual “architectur&” Our Environment and Requirements

(instruction set and registers) of the processor to be usedTo really decrease development time for embedded sys-
The first step is optimized by applying a set of semiloems, we have to select a high-level representation that is
cal transformations to yield an intermediate representatiqmp|ementation independent and easy to use for a system
that can be directly translated to more compact and fasifisigner, and then select a set of mathematically well-defined
code. The following steps deal with the architecture-specifgerations to translate and optimize this representation. Among
transformations that include register allocation and instructigqf embedded systems applications, we chose to focus on
selection. _ - control-dominatedembedded systems, characterized by the
The use of semilocal, peep-hole optimization is justified gfportance given to the decision process that leads from a
the one hand by the need for compiling code in reasonalg: of input events to a set of output events (reaction). The
time, on the other by the great variety of constructs to degigh-level representation of choice is an interconnection or
with. After all, it is often reported that the bottleneck imetwork of communicating processes wilSM semantics.

software debugging is compilation time. Today, FSM’s are commonly used in embedded system de-
sign tools both explicitly (specified in graphical or textual
D. Software versus Hardware Compilation form [20], [32]) and as an intermediate format ([8], [19],

The analogy between hardware and software compilatigf’?])'
has been known and exploited for a long time [16]. Hard-
ware compilation (or high-level synthesis) [7], [27] involve$®: TheFSM Model: CFSM's
functional and register allocation and scheduling, followed by The use ofFSM’s for embedded control specification offers
component synthesis and optimization. Software compilatiseveral advantages over apparently more powerful formalisms
[1] traditionally involves register allocation and instructior(such as unrestricted programming languages). First of all,
selection, followed by local optimizations. they are easily understood and widely used even as informal
Exploiting the link between these two continues to bspecifications. Second, there are abundant theoretical and
a fruitful avenue for research: technologies for each apeactical results concerning their manipulation (minimization,
continually advancing, and the two domains have traditionalgncoding, formal verification of properties, etc.).
had significant differences that have prevented the applicationJnfortunately “pure” FSM’s do not provide a very con-
of some techniques in each domain to the other. In particulaenient representation for systems that perform even a small
optimization has typically been more aggressive in hardwaaenount of computation. It is then customary to extend them
synthesis, while for software long compilation times haveith the capability to perform assignments of expressions
prevented global techniques from being employed. to variables, and to use relational operators to determine
In our context, hardware and software in a single systemansition conditions. This mechanism increases the expressive
are synthesized together. This implies that the software ppdwer at the expense of the synthesis and verification capa-
is derived from the same starting point as the hardware amdijties (e.g., there is no longer a “canonical” form for such
thus, is “hardware-like” and contains a small set of simplextendedFSM'’s, verification becomes much more difficult,
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etc.). In our design methodology and tools, we have se-
lected an extended FSM model calleadesign FSMCFSM), resources, due to exposing larger statically sched-
defined in [12] and [13]. This representation extends classical uled units to the underlying C compiler.

FSM’s with arithmetic and relational operators, and assuUmesy) A real-time operating system (RTOS) is used to activate
that CFSM’s interact via an asynchronous communication appropriately the tasks implementing tBESM’s. Our
mechanism that allows great_flexibility and expressive power. synthesis procedure, in addition, provides execution time
Even though throughout this paper we refer @-SM's estimates that can be used either by a user or by an

as representation, our results on software generation can be 4 iomatic RTOS generator to devise a scheduling policy
applied to any extended FSM-based specification, like those 4+ is guaranteed to meet the timing constraints.

mentioned above. 3) An existing general-purpose C compiler is used to
transform the C code that we produce into machine
code. This allows us to concentrate on domain-specific
transformations, while leaving general ones such as reg-
ister allocation and instruction selection to the general-
purpose C compiler. Note that the C code that we
produce is so simple and low-level that we can keep

—(possibly) the increased utilization of processor

H. Our Approach to Software Synthesis

The purpose of this paper is to describe algorithms for
a software synthesis system generating C code fR3iM
specifications. This system includes optimization techniques
that are either impossible or simply too expensive in the
general compiler domain ([1]), but are very effective in a very tight control over the resulting machine code,
our restricted domain. Moreover, unlike classical compilation ~ and the compiler cannot “undo” our optimizations.
algorithms, our software synthesis technique starts from awe use a control/data-flow diagram (called ssgraph for
description of thefunctionto be computed, rather than fromsoftware graph) as an intermediate data structure. The s-graph
an operational implementation of it. This allows the use @ simpler than general control/data-flow diagrams, because
powerful optimization algorithms based on Boolean functioit needs only to represent a single function from a discrete
manipulation methods. We tightly couple the optimizatiodomain (the set of input events and values) to a discrete
process with a fast and accurate timing and code-size eslémain (the set of output events and values). As such, it
mation procedure to take into account constraints at a mufyuires only conditional branch and assignment as primitives
finer granularity than is possible with a truly general-purpoggaugmented with arithmetic and relational expressions without
compiler. We do not claim to have invented a new generside effects). The s-graph has a direct representation in C
purpose compiler, because the domain of applications is mugid can be translated with equal ease into object code by
more restricted. any available compiler. In this way, we can obtain good cost

Throughout this paper we make the following main assumgnd performance estimates at any intermediate stage of the
tions. optimization process, without the need to compile the code

1) The specification is given as a network 6FSM’s. and analyze the results.

Note that even though such a specification is not biasedOur software synthesis procedure is composed of the fol-
toward any particular implementation, it does impos®wing main steps:

a network structure which we preserve during synthe- 1) optimized translation of the transition function of a given
sis. This means that eacdBFSM is a synchronous, CFSM into an s-graph;

statically scheduled entity, while the network is asyn- 2)
chronous, concurrent, and dynamically scheduled. Theg)
granularity level is defineda priori by the designer, 4)
and the ordering of emission of output events is de- 5)
cided statically by our synthesis algorithm, with the

s-graph optimization and code-size estimation;
translation of the s-graph into a target language;
scheduling of th&€€FSM'’s and generation of the RTOS;
compilation into machine code to be run on the target
processor.

objective of minimizing code size as discussed in Segqep 1 consists of building an optimized binary decision dia-
tion 11I-B. A more global approach, in which the syn-4ram @DD, [10]) for the transition function as an intermediate
chronous/asynchronous boundary can be chosen as pggfesentation, to generate an initial s-graph corresponding to
of the synthesis process, with the objective of simultangyge that executeery fast potentially at the expense of code

ously optimizing code size and execution time is left tg;,q

It is based on a new result, described in this paper, that

future research. Note that a growth of the synchronodgyies the equivalence between:

islands CFSM’s) typically induces:

¢ a multioutput multivalued functiorf;

e an increase in code size, due to the more complexs an s-graph computing, that is directly obtained from a

transition function that must be computed;

BDD representingf.

* a reduction in execution time (if synthesis is per- Step 2 is similar to standard software optimization tech-
formed using the techniques described in Sectigiiques based on control/data-flow diagrams (Section Il con-
l1I-B, where the execution time of the control portiontains a discussion of its relation to previous work). Thus far, we
of the code depends almost entirely on the numbggave generated C code in Step 3, though any target language

of inputs and outputs of eaddFSM), due to:

is possible. Step 4 uses the software performance estimation

—the reduction of communication and schedulingackage and classical real-time scheduling algorithms [24],

overhead;

[18] to schedule th€FSM'’s while meeting the given timing
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constraints. The compilation in Step 5 is done using existirte given timing constraints. In our case, we decompose the

C compilers for the target embedded processors. problem of satisfying timing constraints into two (possibly
The paper is organized as follows. Section Il contairiterated) steps:

background information and a summary of thtESM network a) software generation for ea@FSM;

model. Section Ill contains the s-graph structure definition, its j) scheduling ofCFSM transitions to satisfy timing con-
synthesis and optimization fro@FSM’s, C code generation, straints.

and softwarg cost and performance _estmahon based O"rRus, we can take advantage of the large body of research
graphs. Section IV descrlbes_the functionality of the autom tE10ut scheduling for real-time systems (e.g., [24]) for the
ically generated RTOS. Section V shows some experimen aond step. On the other hand, some of the fine-grained

results demonstrating the effectiveness of the approach. scheduling algorithms described in [17] and [14], for exam-
ple, can also be used to perform a preliminary optimization
before our synthesis algorithm. This would allow an easier
satisfaction of “short term” timing constraints (e.g., those
dictated by a specific interface protocol implemented directly

1) Software SynthesisPrevious approaches to automateth software) which may be more difficult to satisfy with
software synthesis for reactive real-time systems have startdassical scheduling techniques (designed for “long term”
either from synchronous programming languages (e.g., Esterebponse and input rate constraints).
[8]), or from other high-level languages ([14] and [17]). 2) Hardware High-Level Synthesidilardware high-level

In the first case, the main problem is the identificatiogynthesis can roughly be divided into two stageshavioral
of a single FSM equivalent to the Esterel specification, andnd register-transfer leve(RTL). The input to the behavioral
its efficient implementation as a software program. Previoggnthesis is a sequential specification, where timing of actions
versions of the Esterel compiler (v3) produced a sifg#, s not fixed. Its output is a collection of registers and a cycle-
which resulted in a veryfast implementation (as all the py-cycle specification of how the registers change. This is
internal communication between modules disappears when then the input to RTL synthesis, which mostly deals with the
single FSM is produced), at the expense of code size. Th®mbinational specification of register transfers, and builds an
versions from v4 on ([34]; see also [9]) maintain a multipptimized circuit for it.
FSM representation, while ensuring that the global behavior issimilarly to classical compilers, behavioral synthesis usually
equivalent to that of a single FSMThus, the composition gperates on a description that is structurally very similar to
is never computed explicitly. This results in a code sizge original specification (e.g., CFG graph). However, the
that is usually linear in the size of the specification (in thgompinationalspecification at its output no longer bears this
worst case, it is proportional to the square of the size of thgsemblance, but it is rather in a form that facilitates powerful
specification). The translation is done via the intermediate forgd mpinational logic optimizations (e.g., sum-of-products or
of Boolean circuits, enabling logic optimization techniquegpp's [7]). In our approach (enabled by domain restric-
to be used to reduce the final code size. However, thefghs) we transform the originalequentialspecification into
optimization techniques are applied to an abstract represgle 5 form. This enables us to extend combinational logic
tation of the final code, and no low-level or tarQEt‘SpeCiﬁBptimization techniquesBDD’s, to be more precise) to the
optimizations are available. Furthermore, the optimization JJ?)timization of sequential programs. In general, these opti-

applied globally to the entire system, with no Opportunityyi,ations are more powerful than local transformations used
for optimizing on a module—by_—module basis. Our approacBy compilers and behavioral synthesis systems.
on the other hand, allows a finer tradeoff between size andPerhaps not surprisingly, the relative value of optimization

speed: ) . techniques changes in the software area. For example, while
+ the designer can choose the granularity of the generaiglp's are used extensively in combinational logic synthesis
CFSM's, even if they are produced from an Estergl, represent and manipulate Boolean functions (e.g., [7],

Il. PRELIMINARIES

A. Previous Work

specification ([36]); _ ~[25], and [31)]), it is generally accepted that they are not
* the de3|_gr.1er can manipulate t&SM hierarchy during 5 very good structure for circuit implementation (except for
synthesis; low-power [22]). In contrast, we will show thaBDD-like

* the optimizations are done at a level closer to the fingly et res are very efficient (though quite unreadable) program
C-code implementation; implementations.
* optimizations include both Boolean-circuit based algo- 1 approach of [7] use®DD’s to represent control
(rjlthr_n§ and dimmodn-tlree_k;]aseorl] algobrlthms; thus far the, tions in a high-level synthesis system. In their work, the
: emsu;n-tree ase agorlé ms have been more Succesﬁ%licaﬂon is purely to hardware; the authors did not make
In producing compact code. o ~ special considerations for software such as optimization based
In the second case, the main emphasis is orstfeduling on estimations of timing of instruction execution. They derive
of operations derived from a concurrent high-level specificghe control functions and build thBDD for them on-the-
tion (e.g., hardware-C, [21]). The problem is that of choosing, several ordering methods are used, but they are all static

an order for potentially concurrent operations that satisfigg,ristics for obtaining a good initi@DD. BDD optimization
1See [7] for more on composition and causality. based on reordering is not applied. Furthermore, that work
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does not exploit interleaving of input and output variables (@ssociated with an input variable, and each of the two out-

at least, does not mention this). edges of the node is associated with the value of the variable
3) Hardware Simulation:Surprisingly enough, the closest(zero or one) along that branch. The representation is made

relatives of our software synthesis techniques come frotompact feduced by sharing common functional subgraphs.

the area of cycle-based hardware simulation. Both [28] a&lven a functionf and anordering of the input variables, the

[3] are aimed at solving a problem that is quite similareduced-ordere@®DD (simply calledBDD in the following)

to ours: efficiently computing on a sequential machine this a canonical form forf.

transition function of ad-SM. Both approaches rely on a BDD While the size of theBDD may be exponential in the

representation of the transition function, and exploit the fanumber of inputs for any ordering, in many practical cases

that, given an input and present state assignment, there exastgood ordering can be found that producesBBD of

a uniqueBDD path that can be used to compute the value afanageable size. Functional operations on BigD take

the next state and output functions. This means that a singié- most n2 space and timen( is the number of nodes

threaded sequential execution of tld®D can be efficiently in the BDD); equivalence checking between twBDD's

implemented on a standard workstation. requires only a graph isomorphism check. The canonicity
Even though the basic problems are related, there argraperty of BDD's, efficient BDD package implementation,
number of differences. and recent improvements in variable ordering strategies have

1) Their starting point is a large synchronous circuit reprénade BDD-based algorithms efficient and effective for a
sented at the gate level, hence, their main problem is \tariety of problems involving Boolean function manipulation.
efficiently represent th&SM without a blow-up of the
BDD sizes (mostly due to data computations represented Characteristic Functions
in FSM form).

Our starting point is an explicit representation of a
ExtendedFSM, in which data computation are repre

Multioutput functions (or, equivalently, sets of functions
Befined on the same domain) can be represented by their

ted usi licit arithmeti ‘ 4 ‘characteristic functionsA single-output binary-valued func-
sented using explicit arithmetic operators. Hence, we (X xY) — {0,1}, where X = X; x --- X

do not suffer f,rom blow—up problems due to the datﬁndY =Y; x ---Y, represents the multioutput multivalued
part. TheBDD’s representing the control part SUﬁerfunction F i X = Y if Y(ay) & (y = f(x)). The

frorrln eﬁi)rorlwiaitial r?rzwrt: l‘esns d?:telzl, alr;d tEendierfigtnhg'éme notation can also be used to describbelation R, as
can control this phenomeno ectly, by changing )?R(x,y)<:>(y€R(x)).

CFSM granularity.
2) Their target is execution on high-end workstationsg

Hence, they can afford to use very large BDD's, an (%factob and is denotedf,,—,. The projection of a function

even to use multivalued variables to represent sets onto a space orthogonal g (or smoothingof £ by «;, or

binary variables_, thu§, causing Igrge lookup tables to_ Sistential quantification of; in f) is denotedS,, f. That is,
generated. Their main problem is cache and translatlﬂnx' € {01}, thenSy f = fo s V fo o j
lookaside buffer thrashing due to the huge size of the Tjhe sup’)po,rt of an%output%v_ariablagyz of a multioutput

generated tables. They also use a simple and fast tamﬁction is the set of inputs upon whigh essentially depends

lookup algorithm to implement th&DD’s using the  \jore precisely, an input variable; belongs to the support of
data section of the object code. it Se yi(wy, - xn) # i1, on)

Our target is execution on often very small embeddéd
controllers, in which memory is a very expensive ) ,
and scarce resource. Hence, we implementgb®'s D Network of Codesign FSM's

directly in executable code, i.e., in thext section of  Our model of a control-dominated reactive system (orig-
the object code. In this way, we can use the efficiemally proposed in [12] and [13]) is globally asynchronous
encoding of theBDD branching structure provided bylocally synchronous (GALShetworkof CFSM’s communi-
the instruction set encoding of the target processor (ofteating viaevents The interested reader is referred to [5] for

The function resulting when some argumenif a function
is replaced by a constarit is called arestriction (or

using fewer bits of address for near jumps). a more complete description of tligFSM model and of the
For this reason, our techniques and results are quite differépplementation choices that we have made.
from those of [28] and [3]. An input or outputCFSM event occurs at some point

in time and may carry a value which is represented by a

discrete-valued variable (cfr. the notion sifjnal in Esterel).

An example of a valued event is a temperature sample,
The BDD is a key data structure as an intermediate repi@- a key hit on a keyboard; an example of a value-less

sentation for our software optimization techniquesbiAary- (also called “pure”) event is an excessive pressure alarm,

decision diagram(BDD [2], [10]) is an efficient representationor a reset button. EacBFSM receives atomically I¢cally

for storing and manipulating Boolean functions. BDD is synchronoul or detects a snapshot of its input events, and

a directed acyclic graph with a root node for each outpperforms its calculations independently and asynchronously

function and leaf nodes representing the value of each oaf- other CFSM’s (globally asynchronoys As a result of

put function for each input minterm. Each nonleaf node the computation, it may sometimes later change state and/or

B. Binary Decision Diagrams
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emit output events. Each event, with or without a value, ihe synchronous hypothesis implies that the behavior of a
associated with a Boolean flag, indicating firesenceof the correct implementation of a synchronous program must be
event, which is true in the time interval between its emissiamalogous to that of aombinational circuit (except for
and its detection. The value of an event is updated by thaiting statements, which are equivalent to registers). As such,
emitter: a correct heterogeneous implementation (mixed hardware
« ideally, at the same time the presence flag is set; and software) requires the solution of a very complex run-
- in practice, especially in a software implementatioime scheduling problem, equivalent basically to hardware
“some small amount of time before” the presence flagjmulation.
is set; Our asynchronous communication model is inherently non-
Each input event may be detected at most once at any tig]%te_rministic. This feature certainly makes th_e design a_nd veri-
after its emission: once detected, it is no longer present at {H&lion process more complex, becaagigpossible resolutions
input of theCFSM. A CFSM's reaction to an event occurrencd'€€d to be considered. On the other hand, nondeterminism
is defined by thetransition function of the CFSM. The enables us to easily model the unprt_edlgtabll|ty of the reaction
transition function synchronously maps the set of input everfi§l2y of aCFSM both at the specification level, where we
and values onto the set of output events and values, possfBRfd 1© represent different implementation styles that imply
based on its internal statg: : X; x --- X,, — Y| x --- Y. quite different reaction delays, and at the implementation level,

A CFSM begins its reaction (computation of the transitio§'Neré delays may still remain intrinsically unpredictable.
function) to an input event after aensing delay (sdjhat Specifically, a software implementation has a delay _that may
is greater than or equal to zero. It completes its reaction B§ Much largerthan a hardware one. Moreover, if soft-

emitting some events afterraaction delay (rdhat is strictly Were is based on a RTOS supporting preemption, it has
greater than zero. reaction delays that depend on the context and as such, in

The model of communication is, in generasynchronous our opinion, cannot be represented .accurately with a model
the emission of events by theFSM's in the network may based on a synchronous hypothesis. l_\lote that our model
happen at any time and independently. Because of the as?ﬂﬁ allow one tehoose a synchronous implementatibat
chrony, there is no guarantee thaEBSM will detect an event fItS into the synchronous hypothesis by modeling the em-
before it is emitted again. Hence, it is possible that an eveptdded system as a singleFSM, but of course does not

and its value are overwritten and lost. This is equivalent to tif'c€ one to choose such an implementation from the very

assumption that there is a buffer of length one between edR$ginning. , . . :
CESM and for each event. The rationale for the introduction of this model is based on

Synchrony and Asynchronyn our framework, thecFsm  the following considerations.

model is used throughout the design process and, in particulars
as a mechanism to capture the design intent. We strongly
believe that at the highest levels of abstraction, restrictive
hypotheses have to be carefully evaluated to make sure that
designs of practical relevance can be appropriately modeled.
For this reason, we have chosen the communication mech-
anism to be asynchronous since this model does not overly
restrict the implementation domain to be considered. .
We also believe that the restriction imposed by synchronous
languages such as Esterel, although very convenient from
the analysis point of view, is too strong at the highest
level of abstraction. Thesynchronous hypothesiassumes
that the reaction to external stimuli of the network of
concurrent processes occurs zero time i.e., all internal .
communication can be abstracted away. As a result, it is
theoretically possible to extract a single, albeit possibly very
large,FSM equivalent to the network of concurrent processes.
This implies that formal verification and other analysis
technigues based on standdf@M’s are possible. On the
other hand, this also may imply a costly final implementation
(where one must ensure that the synchrony hypothesis is
indeed valid, that is, that the system reacts much faster
than its environment) and a small solution space (where

A networkof components can express a complex behavior
while keeping the complexity of each component at a
reasonable level.

The behavior specification is extended with the use of
arithmetic (or other) operations to be able to represent
embedded systems whereal-valued variablesare con-
trolled.

The reaction and sensing delays are useful in modeling
and constraining theéiming behaviorof heterogeneous
implementations (software may take apriori unknown
number of clock cycles to execute a task represented by
a CFSM while a straightforward synchronous hardware
implementation takes only one cycle).

An asynchronous communication mechanisnmore ef-
ficient for representing the interaction among tasks in
an embedded system, where timing constraints are tight
and synchronous implementations may cause unnecessary
delays because the common pace of the system must be
slow enough to accommodate the slowest communication
link.

Ill. SOFTWARE GRAPHS

one must force the validity of the hypothesis). In particular, This section begins with the definition of an s-graph in

Section 1lI-A. The synthesis and optimization of an s-graph
P . . L __from a CFSM transition function is described in Section Ill-
This choice was made in order to allow an efficient implementation i

software, without the need to disable interrupts for long periods of time % F'nally' .softwar.e cost estimation based on the s-graph is
implement emission atomicity. described in Section IlII-C.
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A. S-Graph Definition @
In this section, we define more precisely the control-flow ?

graph that we use as internal representation of GReSM
transition function.

Definition 1: An s-graph G is a directed acyclic graph
(DAG) with one source and one sink. Its vertex Betontains
four types of verticesBEGIN, END, TEST, and ASSIGN.
The source has tyg8EGIN, the sink has typ&ND. All other
vertices are of typelEST or ASSIGN. EachTEST vertex
v has two children tru@) and falsév).> Each BEGIN or
ASSIGN vertexu has one chilchextu) only. Any nonsource @ @
vertex can have one or more parents. An s-graph is associated
with a set ofm input and! output variablesz, - -, z,,44, =
ranging over finite domain®(z1 ), - - - , D(zm+1), respectively. @ @

« EachASSIGN vertexwv is labeled with an output variable

2y, and aD(z,)-valued functiona,(z1, -, 2m4). In
the graphical representation of s-graphs, e.g., in Fig. 1, @
we label such a vertex with, := a,(z1,- -, zm41) tO
indicate the intuitive meaning cASSIGN vertices. Fig. 1. A simple s-graph.
« Each TEST vertex v is labeled with a predicate ) i , )
pulz1,- -, zmas), Whose truth value determines which whethery is being emitted in the current synchronous

child will be executed. reaction. Ify were not pure, it would also be associated

A simple s-graph is shown in Fig. 1. It corresponds to with an output variable holding thg value tq be emitted.

the reactive behavior, represented in Esierel as shown at thg) To each state vana_ble we associate one nput aind one
’ ' output s-graph variable (no presence information is

bottom of the page. . ] ) . associated with state variables, of course). For example,
1) To each valued input signal we associate two input input variablea and output variable@’ correspond to

s-graph variables, one Boolean and one with the same e yalues of state variabtein the current and the next
domain as the signal, while a pure input is associated | g5ction respectively.

gng :Q?OET:te?joaﬁﬁh input. For example, input signal The Esterel statemerdwait ¢ is implemented by the
: TEST node checking ifpresent ¢ is 1. The outermost

e a Boolean Variabm)resent_c , indicating thatc |00p is implemented by the RTOS, that will call the C code

is present in the currel@FSM input snapshot; synthesized from the s-graph every time it must execute a
« an integer variabl@c, holding its value. reaction (aCFSM transition), i.e., every time it has at least
one present input event.
2) Similarly, to each valued output signal we associate two The s-graph model resemblésanching programs([23],

output s-graph variables. For example, output signal [29]) andbinary decision diagramsBoth branching programs
is associated with Boolean varial#enit_y indicating andBDD's are different from s-graphs because they allow:

3 ) N ) ) « only single-variable predicates GrEST nodes;
The implementation described in Section V allows more than two children. . . ts t | ingl tout iabl the last
The extension of the definitions and theorems to the more general case is assignments to only a single output variable (as the las

trivial. level of nodes).
module simple: % CFSM name
input c:integer; % integer input signal
output y; % pure output signal
var ainteger in % local state variable
loop % loop forever
await c; % wait for ¢ to be present
if a =7?c then %if a is equal to the value of c
a:=0;
emit vy;
else
a:=a+1,;
end if
end loop
end var

end module
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We will see in Section 1lI-B, though, that there is a close corFhis fact can be used in optimizing the s-graph, as briefly
nection between &DD representation of £FSM transition explained in Section 11I-B2.
function and an s-graph computing it.

The evaluation of the multioutput function computed by aB. S-Graph Implementation and Optimization

s-g_raph WithBEGIN node_v, m 'npl_]t variables, and output Software generation for a giveBFSM proceeds by generat-
variables uses the following algonthm. Letdgnote a vectqr ing the initial s-graph from the transition function, optimizing
of temporary variables, each uniquely associated with an qug s-graph, and translating it into C code
or an output variablé,and ¢ denote an uninitialized value. 1) Handli’ng of Extended ESM'sThe traﬁsition function
Erogedureevaluate(v: vertex.zy, - - -, o variable) of a CFSM in general involves both Boolean (or symbolic
eglfr;r 1<j<m+l muItiv_aIued) and _(bounded) integer v_ariables. The former are
L TS = . . : used in the reactive control part, while the latter are used in
'flzj is an input then assign to it the corresponding the computational data part. This paper focuses on optimizing
ev2|sseta)zie:€xt(v) o) pontrol-dominated spec?ficatior?s a|_'1d, hence, the discussion
for 1‘< j<m+l, Lyt Amat in .the rgmamder of.th|s section |s_mostly devoted to an
L == o . efficient implementation of the reactive control component.
if 2; is an output then assign it to the corresponang However, real specifications seldom consist completely of

dreturn (Y, w) reactive control. Hence, we adopt a mixed representation of
en a CFSM.

procedureevalstep (V:vertex: zq, - - -, variable) In this paper, we represeqt ti=SM transition function as
begin B ' LTt Al a composition of the following:

if vis aTEST then e setT of testson input and state variables;
» setA of actions which can be either output emissions or

if po(21,-,2my) then ; ; .
eval step (true(v), 21, - - - , zms) asmgnmgnts to s?ate varlgbles,
elseeval step (false(V), 71, - - - » zms1) ¢ the reactive functionmapping subsets of’ to subsets
else ifv is an ASSIGN then of A, repjgesented by its characteristic functidn :
{0, LTHAT = {0, 1},
Zy = a’U(zlv"'vznl-l-l) ; ;
evalstep (next(v), z1, - - - , Zm+s) For example, for the ESTEREII_ module in Section | tests
end arepresent_ ¢ anda="?c, actions area’ :=a, a' :=0,

Definition 2: Let G be an s-graph, and letbe partitoned @& :=a+1, andemit y , and the reactive function is
among input and output variables as assumed by procedulg)(}esent_C s =7 &
evaluate

G is functional if every output variablez;:

:—=a a’':=0 a’':=a+1 emity

0 0 1 0 0 0

1) is assigned byeval _step at least one defined (i.e., 0 1 1 0 0 0
different from €) value for each combination of values 1 0 0 0 1 0

of the input variables; 1 1 0 1 0 1

2) has a defined value whenever a predicate or a function . ) ) , i
depending ory; is visited byeval_step Tests and actions will be implemented as expressions in
J _

. . the target language. The reactive function is just a Boolean
It is easy to show that for a functional s-grapvaluate : . . i
: - T function, for which we construct an s-graph, as described in
defines a completely specified 1/O function, i.e., that ; N
the next section. The procedure produces an initial implemen-

evaluate(cy, -, cm) € D(y1) X --- x D(y1) tation, that can be optimized using a variety of techniques.
for all (c1, -+, cm) € D(w1) X -+ X D(@m). Conceptually, theCFSM transition function is executed in
_ . three phases.
Itis also easy to check thatmnfunctionak-graph denotes: 5 Tests are evaluated to determine the values of input
 either an incompletely specified function, if condition 1) variables of the reactive function.
in Definition 2 is violated; b) The s-graph of the reactive function is evaluated to
< or arelation between the input and the output variables, determine the values of its output variables.

if condition 2) in Definition 2 is violated. In this case, ¢) Actions corresponding to output variables with value
we consider aondeterministiexecution ofevaluate in one, are executed.

which the undefined value can mean any value in the ,ractice, these three phases are interleaved. Test are evalu-
domain of the corresponding variable. Then an elemegieq a5 they are needed during s-graph evaluation, and actions
Of Xy x> X X ¥1 X -~ % ¥ belongs to the relation 5r6 eyecuted as soon as the corresponding variable is known
if one possible choice in the evaluation ofT&€ST or 5 he one.
ASSIGN node with an undefined predicate or function tyq,ghout this paper, we assume that expressions do not
can yield it. have side effects and, hence, that their execution can be
41n Section 111-B2, we will show how to compute a heuristically “good’f€0rdered at will in order to optimize, e.g., code size as

association in order to minimize the s-graph size. described later. For the basicFSM model as described
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previously, the only expression that possibly has a side effect Proof: Consider an assignment of valugs, - - -, ¢,,) to
is a division by zero, that may cause an arithmetic exceptiche input variablescy,---,z,, of f, and an arbitrary output
We will, hence, assume that division is implemented safely (By, = fi(z1, -, %m).

first checking if the divisor is zero) and that a corr€@fSM Traverse the s-graph up to akSSIGN node v labeled
never uses the result of a division by zero (even though it mayth s, (from the definition of build, it follows there
perform it as part of its evaluation). exists exactly one such node on any path fr®@EGIN
2) Initial S-Graph ImplementationThe initial s-graph is to END). Suppose, without loss of generality, that in
built recursively starting from the reactive function, as followshis traversal, TEST nodes labeled with the first input
The input and output variables, - - -, zm4i (Wherem = |T|  variables andASSIGN nodes labeled with the first — 1

and! = | A) are visited based on an initiatbitrary ordering. output variables have been visited. Whemild is called
The assignment functions are computed based on the Shanfpnode v, F = Syy yk_1X£1=c1 o w—c. . Hence,a, =

decomposition(f = z; f», + T; fz,). Proceduréuild is called
with an initial variable index of zero, and the functidhset to depends on the unvisited iNpUtS,;1,- -,z only). The
the reactive function. As we will see below, the choice of the, e ofa. is one if and only iffi(c1 7 c’ ) =1 (i.e., the

ordering_influgnces the form of the final s-graph (SpeCiﬁcaIValue assigned tgy, is correct), because 1) by definition the
the relative mix ofTEST and ASSIGN nodes). characteristic function is/ = Hﬁc:l (e = flans - aom));

2) the smooth function distributes over functions that
are independent of the smoothing variablg;(f - g) =

YL Yk— 1Ykt 1> Ym X@1 =c1,,Tr =Cn U =1 (a function which

procedurebuild (z1, - - - , zm+: Variable;i: index; £ function)

beglirf1 " 0 then f - (S.g) if f is independent ofe. 1) and 2) imply that
t= _ f _ _
create aBEGIN vertexv v — Sylz--_-:ykq,yw7--.-7.'y.mXx1)=c1,~~~,a:n=cn,yk=1 = fu(z: 5
nextv) < build (z1, - - -, zmyi, 1, F); € s B = Cny Tl 5 Em)-

Note that the mapping from the transition function to the
s-graph is not unique since it is based on the ordering of the
variables. Section I11-B3 discusses the influence of this choice
over the characteristics of the generated code.

Moreover, the input to this algorithm need not always be
a function but could also be aelation (e.g., when nonde-
terminism is used to describe design freedom). In that case,

create amASSIGN vertexw labeled withz; with a modification to theASSIGN function a,, as indicated
anda, = S. jicj<mat, is an output Py =1 bglow, there may be cases in whlch.the vallue assigned to
next(y) < build (21, - __jzm%i +1,5..F) still dgpends ory; (as well as on any input still to be tested).

return reduce(v) The simplest case, whefy ., ..., ., x/ = z;, corresponds to
end a classical “don’t care”, becausg can be assigned any value

We assume that theeduce function, called in the last step, (including the cheapest option of no assignment) and still be
ensures that a graph with roothas no isomorphic subgraphscompatible with the characteristic function.
exacﬂy as in BDD construction [10] In particu|a|reduce This fIEX|b|||ty can be eXpIOited to minimize the size of the

else if ' =1 then
create theEND vertexv;
else if z; is an input, then
create aTEST vertexv with p, = (2);
true(v) < build (21, -+, 2, e+ 1, Fo )
falsgv) < build(z1, -+ -, 2Zm41, ¢ + 1, Fr.z0)
else if z; is an output, then

should eliminate all but onEND node. s-graph, because th&SSIGN label a,, could in fact be any
We can now show the correctness of this algorithm. function which satisfies the conditions shown at the bottom
Theorem 1:Let x/(x1,-- -, 2Zm,y1,---,u) be the charac- of the page. Note that the two cases do not cover all possible
teristic function of multioutput functionf, such thaty, = input combinations and, hence, we have some flexibility in
filz1, -+, 7m), and letv be theBEGIN vertex of the s-graph the implementation.
G returned by procedureuild (z1, - -+, T, y1, - -+ ¥ 05 x7). 3) S-Graph Optimization:
Then, for all(ci, -+, ¢n) € D(xy) X -+ X D(xp,) a) Optimization by reordering:An s-graph can be opti-
mized by reordering the nodes to minimize size and/or depth.
evaluate(v,cq, -+, cm) = flct, +, cm)- In practice, it is more efficient to consider the ordering before

1) is one whenever

) f . f
(Szj|7‘,<j§m+l,zj is an outputX,;q:l) A (Szj|7‘,<j§m+l,zj is an outputX;,/i=o)
is one

and
2) is zero whenever

. f . 7
(SZj|i<j§m+l,Zj IS an OUtpUthizl) v (Szj|i<j§m+l,zj is an outputXZz:o)

is zero.
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building the complete graph. There are three major classesedl-time systems where absolute exactness in execution time
variable orderings. predictionis a key for safe operation.

i) Ordering each outpuafter its support yields an s- Experimentally we have seen that this method of s-graph
graph where all the decision computation is done gonstruction, even though it could in principle offer better
TEST’s. ASSIGN nodes are labeled only with actionsopportunities than the first one due to the more general sharing
on output variables (i.e., only with output variableproperties of Boolean expressions with respecBRD’s, in
and constants in the reactive function representatiomyactice yields larger and slower code. We did not experiment

i)  Ordering each outpubeforeits support yields an s- with intermediate orderings, and we leave this exploration to

graph withoutTEST nodes. future work.
iii) All other orderings yield an s-graph with a mix of d) Optimization by collapsing test node¥Ve have also
TEST and ASSIGN nodes. experimented with optimization oFEST nodes with respect

b) Ordering outputs after their supportOur current im- to the first ordering scheme, by allowing eat&EST node
plementation uses the first ordering scheme. In that case, ifusction to depend on more than one variable. Just as Boolean
easy to show that the structure of the s-graph correspon@gic can be made more efficient by factoring out common
exactly to that of aBDD representingCFSM'’s reactive Subexpressions, both the size and speed of code generated
function. Informally, TEST nodes correspond tBDD nodes from the s-graph can potentially be improved by judiciously
associated with inputs of the reactive function, wiBSIGN combining TEST nodes and, thereby, factoring out common
nodes correspond to the outputs. Therefapgtimization of test expressions.
the s-graph can be done directly on tB®D representing the  The algorithm performs a depth-first search from the BEGIN
CFSM characteristic function. node to generate closed subgraphs. A closed subgraph is one

We heuristically optimize the size of thBDD by dynamic in which all incoming edges share a common parent; a closed
variable reordering, using the “sift” algorithm [31]. Siftingsubgraph ofTEST nodes can be collapsed without changing
moves one variable at a time up and down in the ordering, atie functionality of the s-graph. Once a set of subgraphs is
freezes it in the position where tH#DD size is minimized. determined, each is replaced by a singEEST node. The C-

In our case we must add the constraint thatoutput can sift code is generated from the Boolean function associated with

before any input in its suppaort each collapsedEST nodes in two different ways:
The s-graph is built using the same ordering as the siftedj) py generating an if-then-else statement based on the
transition functionBDD and, thus, it has the following. truth table:

» Each input variable is tested only once per path. Thisii) by generating a Boolean network implementing the
provides the minimum depth s-graph, and thus implies a required function. In this case, we create a temporary
heuristicallyminimum execution time variable in the C-code for each internal variable in the

* The ordering of the variable tests is heuristicalfptimal Boolean network, and an if-then-else statement in the
for code sizein the sense that no single variable can be  C-code for each node function in the Boolean network.

moved in the ordering while decreasing the size of thg 5 series of experiments including Boolean network opti-
BDD and, hence, of the s-graph. mization and two-level and multilevel C-code generation, we
¢) Ordering outputs before their suppoithe second or- never observed an improvement in the final running time or
dering scheme, which is implemented in the current versi@fye of the generated code. As a result, we do not currently
of the Esterel compiler ([9]), can be implemented by directlyjse TEST node collapsing.
building a Boolean circuit implementing the reactive func- 4) s-Graph to C TranslationThe s-graph obtained ac-

tion. The Boolean circuit is optimized using, e.g., the logigording to one of the procedures described in the previous
synthesis algorithms described in [33]. The s-graph can NQWction can now be translated into C code to be compiled
be constructed as a string ASSIGN vertices, one for each g the target machine. There are a number of optimization

action. For example, the s-graph in Fig. 1 would be reducgerations that can be performed on the s-graph before
to four ASSIGN vertices with the following labets final code generation. Some of them, such as common

subexpression factoring, etc., are common to general-purpose

ity = =7¢): . ) e )
emit._y i= present_c A (a =7c); compilers and will not be described in detail here.

a' = ITE(—present c,a,a’); The final translation of the s-graph into C (or any other
a’ ;= ITE(present_c A =(a =7?c),a+ 1,2’); high-level language) is straightforward due to the direct corre-
a’ = ITE(present_c A (a =7c),0,a’). spondence between s-graph node types and basic C primitives.

The fact that the code is so unstructured may hinder its

The s-graph obtained in this way has m&ST vertices. readability, but allows greater efficiency. In our codesign
Hence, all its executions take exactly the same time, if wBethodology the designer should not see this low-level, just
ignore the effects of the memory hierarchy and of different efike the user of a general-purpose compiler should never
ecution times for the same arithmetic operation with differefiave to look at the assembly code. The generated C code
input data. This property is very important for highly criticapontains compiler directives that relate directly the object code

with the source languagdiles that were used for thEFSM

5The value of TE(x,y,z)  isy if x is 1 andz, otherwise. specification (e.g., using Esterel or Verilog). This allows any
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source level debugger used for the embedded softwarectompute the minimum and maximum number of execution
display directly the original code and variables. cycles and the code size.

A TEST node is translated to a string dfor switch state- Each vertex is assigned two cost parameters, one for timing
ments and an appropriate numbeigotcs. A target-dependent and one for size, which depend on the type of the vertex and
parameter can be used to specify how many childr@E&T the type of the input and/or output variables of the vertex.
node must have in order to make #rbased implementation Edges may also have an associated cost, atht#reand else
more convenient than switchbased on€.An ASSIGN node branches of arif statement generally take different times to
is translated to an assignment. Appropriate declarations execute. Currently, we use 17 cost parameters for calculating
local and global variables are also inserted into the outpeecution cycles, 15 for code size, and four for characterizing
code. the system (e.g., the size of a pointer).

Note that this code is very different from standard hand- The parameters for execution time or code size correspond
written structured code, and is almost likpartable assembly to the kind of statements generated from a node in the s-graph.
code We could also produce true assembly code from ahese are as follows:

s-graph, but this would require to solve too many processor-, 5 TEST node detecting the presence of a signal (which
dependent issues, like instruction selection, register assign- yie|ds an RTOS function call);

ment, and so on. « a TEST node branching on a multivalued expression
(which yields anif or switch statement);
C. Software Cost and Performance Estimation « an ASSIGN node emitting a signal (which yields an

Hardware/software partitioning and software synthesis for RTOS call), _ _ _
real-time embedded systems require accurate and quick estt @n ASSIGN node which assigns an expression to a
mates of code size and of minimum and maximum execution Variable (which yields an assignment).

time. In the case of &EST node with two outgoing edges, the cost
The following two aspects of the problem must be consigrarameters for each edge (i.e., the true case and the false case)
ered: are stored explicitly. For ZEST node which has more than

1) the structure of the code, e.g., loops and false paths three edges, the execution time for th¢h edge is represented
2) the system on which the program will run, including®S Zswitcli = Chase + kCcase, Dy USINg two parameterS),as.
the CPU (instruction set, interrupts, etc.), the hardwa®d Ccase.
architecture (cache, etc.), the operating system, and the'he other parameters for the execution time and code size
compiler. are defined for:
The s-graph structure is very similar (as shown in Section* calling and returning from a C function with a given
I11-B4) to the final code structure and, hence, helps in solving number of local variables and parameters;
the problem of cost and performance estimation as follows: ¢ a branch operation (generated frong@to statement);

« each vertex in an s-graph is in one-to-one correspondencé Initialization of a local variable;
L]

with a statement of the synthesized C code; average execution time and size for predefined soft-
the corresponding vertex. relational and logical functions, such A®D(x1,x2),

This means that the resulting C code is poorly structured from aR(X_l’XZ)% EQ.(Xl’X_Z) )i
a user’s point of view, but is simple enough that the effects of * the size of pointers;

the target system on the execution time and code size of each the size_ of integer .variables. _
vertex type can be easily determined. The functions used in the data-flow graph portion of a

T|m|ng ana|ysis is Simp|e because S_graphs are acyc“éFSM can also be user-defined. A user-derived cost for those

looping is dealt with at the operating system level. Moreovelunction should be given by hand to the estimation algorithm.
false paths can be determined with a good degree of accuracyhe cost parameters are determined for each target sys-
from the structure of th€FSM network, e.g., by computing tem (CPU, memory/bus architecture, compiler) with a set
event incompatibility relations. of sample benchmark programs. These programs are written
Cost estimation can, hence, be done with a simple traver§alC and consist of about 20 functions, each with 10-40
of the s-graph. Costs are assigned to every vertex, represengtgjements. Eadhor assignment statement which is contained
its estimated execution cycle requirements and code sifethese functions has the same style as one of the statements
(including most effects of the target system). generated from aEST or ASSIGN vertex. The value of
1) Cost Estimation on the S-GrapRur estimation method each parameter is determined by examining the execution
consists of first determining the cost parameters for the targycles and the code size of each function. A profiler or an
system and then applying those parameters to the s-graptassembly-level code analysis tool, if available, can be used
for this examination. We are currently using an internally
6This is_done_ for very si_mple compilers_ that do ot have the capabili@evebped cycle calculator for the Motorola 68HC11, the
of performing this optimization. Such compilers are indeed encountered Wilfyie tool for MIPS R3000 CPU's, and the profiling tool pro-
ided with a commercial in-circuit emulator for the Motorola

A path in an s-graph is false if it can never be executed, e.g., due de
conflicting Boolean conditions. 68 332.
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The calculation of software performance can be done dgxecutions ofCFSM’s into a single task, thus reducing sched-
namically or statically after tagging each line of code witliling and communication overhead. We expect that eventually
its estimated execution time. Dynamic calculation can bewill be possible to automatically select a scheduling policy
done with realistic inputs by using the simulation environmenthich provably meets all the timing constraints, based on the
described in [30], where both the structure of the synthesizdquency of events in the environment and on the estimated
code (e.g., false or seldom executed paths) and the architeckxecution times of the s\ttFSM’s and of the RTOS ([4]). In
of the target system (e.g., preemptive scheduling policy andy case, once a scheduling policy is chosen, C (and some
interrupts) can be considered. Static calculation, useful fassembly) code that implements that policy at run-time is
example for worst case execution time analysis in the contetitomatically generated [15].
of real-time scheduling, can be done by using graph traversal
algorithms. Assume thak’ is the number of edges in the s-
graph andN the number of nodes. The minimum executioB. Communicating Events Between 8FSMs

cycles can be calculated by finding a minimum-cost path baseqNhen a SWCFSM emits an event, every other SBFSM

?hn II;)Elsztra’st sh(:cr;(re]st path aIOgoEritlhrhA;‘romﬂ;[r&EGll_\l to sensitive to that event must be informed of it and enabled. To
€ vertex of the s-grapO(£log V). The maximum every CFSM we assign a set of private flags, one for each

execution cycles can be calculated by flndlng a mammum—cqﬁbut, to indicate whether that event has occurred since the
path bésed on the PERT longest p{;\th glgon(rmﬁE)). The revious transition. ACFSM is scheduled to run by the RTOS
cpde size, useful .for ROM cost e§t|mat|on, can be calculat enever it has at least one input flag set (its actual execution
S|mply by summing the code size parameters for all tnﬁay be delayed byCFSM’s with higher priority, according
vertices of the s-graph({(E)). to the scheduling policy). Once it is run, tf@FSM checks

its input flags to decide (using the s-graph) which one (if any)
of its transitions to execute. Thus, the emission of an event

In Section Il we described the software generation procet%:smSIStS of setting all the appropriate flags and enabling all

for individual CFSM'’s. To implement a valid behavior of a € appropriate tasks, and the detection of an event s a simple

networkof CFSM’s, additional code is needed to perform thé:heCk on the status of a flag.

following functions:
* schedule individualCFSM's implemented in software ~ Communicating Events Between hw- andGFSM's

(sw-CFSM’s) such that each one is executed in a timely _
manner: Events emitted by a s\WeFSM and consumed by a hw-

« provide a mechanism for event emission and detectiérFSM are communicated through a memory mapped in-
between SWEFSM’s: put—output (1/0) port of the micro-controller. Events emitted
« provide a mechanism for transferring events betwed @ hwCFSM are delivered to a s\&FSM by one of the
CFSM'’s implemented in hardware (h®FSM) and those following mechanisms.
implemented in software; Polling: In this case, a hvGFSM only sets an ap-

IV. GENERATION OF THE REAL-TIME OPERATING SYSTEM

e ensure that consumption of input events by aGWEM
is consistent with the semantics described in Section 1I-D.
We propose to synthesize this code automatically. We call
this codereal-time operating systefRTOS), because it per-
forms communication and scheduling functions traditionally
performed by an operation system.

A. Scheduling of sSWeFSM's

Every swCFSM'’s can be in one of two statestisabled
(when there are no events at its inputs) emabled (when
such events exist). A s®@FSM’s becomes enabled when any
of its input events occur. An enabled ©FSM needs to
be executed. Once it finishes its execution, aGWEM is
disabled.

The RTOS must keep track of the state of every sw-
CFSM. Moreover, it must decide which one of the (possibly
many) enabled s\GFSM'’s to execute. The set of rules used
to make this decision is called thscheduling policy In

Interrupts:

propriate bit on an I/O port of the micro-
controller. An automatically generated polling
routine is periodically scheduled to execute
and if it finds the bit set, it will execute the
event emission routine. This solution has mini-
mal hardware requirements, but does introduce
an additional delay because an event cannot
be detected by a sWFSM before the polling
routine is executed.

In this case, if a hweFSM wants to emit an
event, it requests an interrupt. When the inter-
rupt is serviced, the corresponding interrupt-
service routine (ISR) is executed. By default,
an ISR contains only an event emission rou-
tine. However, the user has the option to
specify that for designated events, all sw-
CFSM'’s sensitive to that event are also to be
executed inside the ISR. In this way, the most
critical tasks can be given immediate attention.

the current implementation, a user chooses off-line one BY default, all events are communicated through interrupts, but
the several available scheduling policies (round-robin, stati@-user may specify any number of events to be polled. This
priority based, with or without preemption). The user can alsaill typically depend on the interrupt handling capabilities of
instruct the system to bypass the RTOS and “chain” certaime processor used in the implementation.
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For completeness, let us note that communicating events be- TABLE |

tween hwCFSM's is easily accomplished via buffer registers REsuLTs OF THE COST/PERFORMANCE ESTIMATIONPROCEDURE

(one bit for each input event). function estimated measured perc. difference
timing size | timing size | timing  size

BELT 353 433 2700 392 30 10
i ODOMETER 379 287 380 266 0 7
D. Consumption of Events FUBL o et s 631 - ]
A CFSM is enabled whenever any of its input events 0CCURPEEDOMETER 851 601 872 621 -2 -3
Thus, it may happen that the software routine implementif§ORMALIZE 920 479 999 458 -7 4
a CFSM is executed, but no transitions are enabled, and th?og%%?fsg - 3;23 4;‘1“1’ 4‘;‘118 5}}23 '2 '155)
none is executed (i.e., NASSIGN nodes are visited while QUAD2SIGN 919 509 928 509 0 0
traversing the s-graph from tHBEGIN to theEND node). The ¢oOIL_SWITCH 1038 677 912 712 13 -4
RTOS ensures that in this case input events are not consunieiER 1005 1417 859 1137 16 24

but rather preserved for the next execution.
As described in Section Il, @FSM may execute a transition TABLE Il

if at some moment in time the set of input events matches one ErFeCT OF DIFFERENT TEST VARIABLE ORDERINGS

of those specified by the transition relation. However, since

a CFSM checks input events in sequence (determined by the function in befolrtezfl:re‘jss;zso(ﬁyltetsv)wlevel
ordering of TEST nodes), it may happen that@FSM will BELT 396 392 1029
detect a particular set of events at its inputs that does not QDOMETER 350 266 365
correspond to any single time point. Consider, for example, a  FUEL 1148 631 872
CFSM with two input events4 and B, and assume that the SPEEDOMETER 724 621 714
CFSM first checks itsA presence flag and then i presence gggg’é%‘llszg 6;‘;’2 ﬁgg 63}72
flag. In a straightforward (and incorrect) implementation, the DETECT EDGE 519 484 612
following sequence may occur: QUAD2SIGN 799 509 931
1) the CFSM checks thed flag and finds thatd has not gg\}{l}é—;WITCH 3;23’; 133 Egg
occurred,
2) the CFSM is interrupted,
3) A occurs, experiment with tradeoffs, e.g., between scheduling policies or
4) B occurs, different event input mechanisms (polling versus interrupts).

5) the CFSM continues the execution, finds th&t has Commercial RTOS's typically do not provide such a flexibility.
occurred and executes a transition which is enabled only

if B has occurred andi has not. V. EXPERIMENTAL RESULTS

Such a behavior is erroneous because at no point in ime Wagye first report the results of the cost/performance estimation
it true that B had occurred andi had not. To avoid this ocedure and of the s-graph synthesis procedure applied to a
problem, the generated RTOS ensures that orGBSM starts g nset of a car dashboard control system. We then compare a

reading its input event flags, no new flags can be set until the,, 51 design and the results of software synthesis for a real
CFSM finishes its execution. However, any events occurringqystrial example, a shock absorber controller.

in that time period are remembered and can be consumed if

) ) n all cases, the numbers are given for a Motorola 68HC11
the following execution.

micro-controller. They are obtained using our estimation pack-
age, as well as by actual measurements done on the output of
E. Comparison with Commercial RTOS'’s the INTROL C compiler for the 68HC11. The timing columns

it is al<ye given in terms of the maximum number of clock cycles for

Instead of automatically generating an RTOS, _ - .
possible to use a commercially available one. For this we orﬁys'ng_Ie tra}nS|t|onof eachCFSM and the codg size columns
e given in terms of bytes. All the results include both the

need to implement the event emission and detection mech&
nisms using the event flag services provided by the RTONtrol and the data part.

and provide the RTOS scheduler with enough information

(usually task execution times and deadlines) to enable it fo The Dashboard Controller

perform its duties. However, we believe that our approach The example considered here is a subset of the functionality
has several advantages. First, since the RTOS has a findéd dashboard controller, that implements the computational
communication structure (neither the number of tasks nor theain from the wheel and engine speed sensors to the pulse
sensitivity of tasks to events changes over the lifetime of tiwadth-modulated outputs controlling the gauges.

generated RTOS), the emission and detection of events can b&able | summarizes the result of the cost estimation proce-
extremely efficiently implemented, and in some cases (wherare, and compares it against an exact measurement of the
task is sensitive to a single event) completely avoided. Secondde size and timing (maximum number of clock cycles),
since only the necessary functionality is generated, the sierformed by analyzing the compiled object code.

of the generated RTOS is often much smaller than the sizeTable Il shows the effect of the different orderings in
of commercial ones. Finally, in our approach one can easjyocedurebuild on the software size. The timing remains
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TABLE Il the approach described in Section 11I-B3, and shows that
COMPARISON OF SOFTWARE SYNTHESIS WITH ESTEREL the possible saving in code size due to the better sharing
Size opportunities offered by Boolean functions in this case does
Program Time | Text Data | Synthesis time not help (nor it does in any of the practical cases that we
POLIS 41,920,700 | 15,008 3168 87.0 have examined so far)_
ESTEREL 103,299,313 | 40,112 11,312 199.5 Our synthesis used the default variable ordering scheme,
ESTEREL_OPT | 45,371,358 | 29,040 11,056 299.8

with single-pass dynamic variable ordering (sift) under the
restriction that each output appear after its support.

approximately the same, since only the order of the tests is
changed. In both cases, the computed function is exactly e The Shock Absorber Controller
same. The only difference is the order of the variables, whichwe have also performed a complete redesign of a real

affects the number offEST nodes. In both cases we usexample, a shock absorber controller. No detailed module-by-
dynamic reordering by sifting [31] (which is known to bemodule comparison with the manual design size is possible,
more efficient than the static methods used, for example, die to a different functional level organization chosen for the
[6]). In the first case we restrict sifting so that all outputgedesign.

appear after all inputs in the BDD. In the second case theThe code size of the synthesized implementation is 46 639
constraint is relaxed as discussed in case 1 in Section Ill-Bistes of ROM and 10229 bytes of RAM, including the RTOS
forcing each output to appear only after its own support. THeound-robin scheduler and I/O drivers), on a 68HC11. The
difference in size is due to the sharing among subgraphs, whigihd-designed implementation had a ROM size of 32 Kbytes
can be performed better in the second case. As a refereng®d a RAM size of 8 Kbytes.

we also compare the result with an implementation which usesThe performance of the synthesized implementation was
a two-level multiway jump structure. The first jump is dongomparable to that of the manual implementation, since both
based on the current state, the second jump is done basgfisfied the 12:s 1/O latency required by the specification.
on the concatenation of all the decision variable into a single The increase in ROM and RAM size is due mostly to the
integer. The jumps are followed by an appropriate sequenfggt that all variables used by an s-graph are copied upon entry
of ASSIGN's. This simple implementation (similar to what isin the corresponding routine, to provide a safe implementation
often done during structured hand-coding of reactive systeng§)the update of their next-state values. We are working on a
performs better than the naive ordering, but worse than thgta flow analysis step that will allow us to detacite-before-
optimized decision graph. The results are in bytes of codead cases that require such buffering, and reduce ROM and

after compiling with the -O option. RAM, as well as CPU time, when no such buffering is needed
We have also tried to compile the same code using the MIRS correctly implement th€FSM semantics.

compiler, which has much better optimization capabilities than
the INTROL compiler, and the results are similar. This demon-
strates that our BDD-based code restructuring optimizations
are beyond the optimization capabilities of general-purposeln this paper, we have presented a new methodology for
compilers. the synthesis of software for embedded real-time control-
Finally, we compared our software implementation to thgominated systems. The methodology exploits the use of a
produced by ESTEREL v5 for the dashboard. These IdsBM specification, and unlike classical compilation algorithms
experiments were done by Compi”ng all the code on a DEgtarts from a description of tHfanctionto be computed, rather
ALPHA and running a large simulation file. The results arthan from one operational implementation of it. This allows
shown in Table Ill. The software simulation time is given irthe use of powerful optimization algorithms based on Boolean
cycles as reported bpixie , and the software size in bytesfunction manipulation methods.
as reported bgize . Only the reactive core code is compared The internal representation that we use is also the basis of a
(the simulation interface code is excluded), and the numbétdick but fairly precise cost- and performance-estimation pro-
for the dashboard modules have been summed to obtain @gglure. The procedure is based on assigning cost parameters
results shown. The final column gives the total elapsed tirf the control/data-flow graph, and can be easily customized
to generate the software implementation. Note that POLfgr different CPU’s and runtime environments.
uses ESTEREL to process ti@FSM's individually, while In the future we plan to exploit the cost-estimation pro-
the ESTEREL compiler (shown in the last two lines) procességdure to perform global optimizations aimed at satisfying
the whole design into a S|ng|ES|\/| Moreover, the majority timing and size constraints, with a much finer tuning than
of the time for the ESTEREL synthesis was taken by tHg currently possible. Moreover, the current code size mini-
C-compiler® mization algorithm uses a single order for variables along all
The ESTEREL_OPT row shows the results using th&graph paths. While this is required in BDD's in order to
Boolean circuit optimization inside the v5 compiler. Thignsure canonicity of representation, it is not clear whether it

technique corresponds to ordering outputs before inputs halps in the software synthesis case. We are thus planning

8 . , . . to explore unordered variants of decision diagrams for our
The C-code was always compiled with the -O option, and the -O limit

flag had to be significantly increased in order to utilize this option on ireoftware optlmlzgtlon [29]-_We are also exploring th? coupling
ESTEREL code. between scheduling algorithms and code synthesis, to allow

VI. CONCLUSIONS AND FUTURE WORK
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the scheduling procedure to transmit user-defined constraifasy C. Meinel, Modified Branching Programs and Their Computational

to the compilation steps.
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